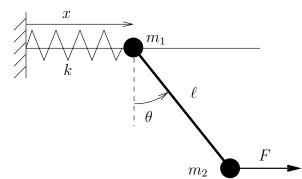
Mecánica

EXAMEN PARCIAL (9 de febrero del 2007)


Apellidos	Nombre	$N.^{o}$	Grupo
Ejercicio 1.º (puntuación: 10/	30)		Tiempo: 45 min.

Responder a las siguientes cuestiones teórico-prácticas dentro del espacio provisto en la hoja. Las respuestas habrán de ser breves y directas, escritas a tinta y con letra clara. Se puede emplear como borrador la hoja adicional que se les ha repartido, que no deberá entregarse. No se permitirá tener sobre la mesa ninguna otra hoja, ni libros ni apuntes de ningún tipo, ni calculadoras.

Sea un sistema binario aislado formado por dos cuerpos de masas m_1 y m_2 , sometidos únicamente a las fuerzas internas ejercidas entre ellos. Las posiciones de las partículas expresadas en un sistema de referencia inercial (I) vienen dadas por los vectores de posición \mathbf{r}_1 y \mathbf{r}_2 , respectivamente. Se pide *obtener* la ecuación del movimiento de la masa m_2 respecto a un sistema no inercial con origen m_1 . Verificar que el movimiento relativo de m_2 con respecto a m_1 se puede interpretar como el correspondiente al de una partícula sujeta a una única fuerza, pero con una masa μ denominada masa reducida que se calculará. (5 ptos.)

Sea un sistema de N partículas cuyas posiciones vienen definidas por las coordenadas \mathbf{r}_i , i = 1, ..., N, sobre las que actúan fuerzas activas \mathbf{f}_i . Dicho sistema está sujeto a enlaces holónomos lisos de forma que la configuración del sistema se puede determinar a partir de n coordenadas generalizadas $\{q_j\}, j = 1, ..., n$, tal que $\mathbf{r}_i = \mathbf{r}_i(q_j, t)$. Definir el concepto de fuerza generalizada Q_j , asociada a la coordenada generalizada q_j .

Aplicación: Sean dos partículas pesadas m_1 y m_2 que se mueven en un plano vertical, rígidamente unidas por una varilla sin masa de longitud ℓ . La partícula m_1 está obligada a moverse por una recta horizontal lisa y se encuentra unida a un muelle lineal de constante k. Sobre la partícula m_2 actúa una fuerza horizontal F. Calcular las fuerzas generalizadas asociadas a los grados de libertad x y θ de todas las fuerzas activas aplicadas (incluyendo las conservativas). (5 ptos.)

