FEAP - A Finite Element Analysis Program

Version 8.0 Parallel User Manual

Robert L. Taylor¹ & Sanjay Govindjee¹,²

¹Department of Civil and Environmental Engineering
University of California at Berkeley
Berkeley, California 94720-1710, USA
E-Mail: rlt@ce.berkeley.edu

²Center of Mechanics
ETH Zurich
CH-8092 Zurich
Switzerland
E-Mail: sanjay@ethz.ch

March 2007
Contents

1 Introduction 1
 1.1 General features 1
 1.2 Problem solution 2
 1.3 Graph partitioning 2
 1.3.1 METIS version 2
 1.3.2 ParMETIS: Parallel graph partitioning 3
 1.3.3 Structure of parallel meshes 4

2 Input files for parallel solution 6
 2.1 Basic structure of parallel file 6
 2.1.1 DOMAIN - Domain description 6
 2.1.2 BLOCked - Block size for equations 8
 2.1.3 LOCal to GLOBal node numbering 8
 2.1.4 GETData and SENDdata - Ghost node retrieve and send 8
 2.1.5 MATRix storage – equation structure 9
 2.1.6 EQUAtion number data 10
 2.1.7 END DOMAIN record 10

3 Solution process 11
 3.1 Command language statements 12
 3.1.1 PETSc Command 12
 3.2 Solution of linear equations 13
 3.2.1 Tolerance for equation solution 13
 3.2.2 GLIST & GNODE: Output of results with global node numbers 14
 3.3 Eigenproblem solution for modal problems 15
 3.3.1 Subspace method solutions 15
 3.3.2 Arnoldi/Lanczos method solutions 16
 3.4 Graphics output 17
 3.4.1 GPLOt command 17
 3.4.2 NDATa command 18

A Solution Command Manual 21
CONTENTS

B Program structure 35
 B.1 Introduction ... 35
 B.2 Building the parallel version 36

C Element modification features 37

D Added subprograms 39

E Parallel Validation 43
 E.1 Timing Tests ... 44
 E.1.1 Linear Elastic Block 44
 E.1.2 Nonlinear Elastic Block 44
 E.1.3 Plasticity ... 44
 E.1.4 Box Beam: Shells 45
 E.1.5 Linear Elastic Block: 10-node Tets 45
 E.1.6 Transient .. 46
 E.1.7 Mock turbine 46
 E.1.8 Mock turbine Small 47
 E.1.9 Mock turbine Tets 47
 E.1.10 Eigenmodes of Mock Turbine 48
 E.2 Serial to Parallel Verification 48
 E.2.1 Linear elastic block 48
 E.2.2 Box Beam ... 49
 E.2.3 Linear Elastic Block: Tets 50
 E.2.4 Mock Turbine: Modal Analysis 51
 E.2.5 Transient .. 54
 E.2.6 Nonlinear elastic block: Static analysis 57
 E.2.7 Nonlinear elastic block: Dynamic analysis 58
 E.2.8 Plastic plate 58
 E.2.9 Transient plastic 59
List of Figures

1.1 Structure of stiffness matrix in partitioned equations. 5
2.1 Input file structure for parallel solution. 7

E.1 Comparison of Serial (left) to Parallel (right) mode shape 1 degree of freedom 1. 52
E.2 Comparison of Serial (left) to Parallel (right) mode shape 2 degree of freedom 2. 52
E.3 Comparison of Serial (left) to Parallel (right) mode shape 3 degree of freedom 3. 52
E.4 Comparison of Serial (left) to Parallel (right) mode shape 4 degree of freedom 1. 53
E.5 Comparison of Serial (left) to Parallel (right) mode shape 5 degree of freedom 2. 53
E.6 Comparison of Serial (left) to Parallel (right) mode shape 1 degree of freedom 1. 54
E.7 Comparison of Serial (left) to Parallel (right) mode shape 2 degree of freedom 2. 54
E.8 Comparison of Serial (left) to Parallel (right) mode shape 3 degree of freedom 3. 55
E.9 Comparison of Serial (left) to Parallel (right) mode shape 4 degree of freedom 1. 55
E.10 Comparison of Serial (left) to Parallel (right) mode shape 5 degree of freedom 2. 55
E.11 von Mises stresses at the end of the loading. (left) serial, (right) parallel 59
E.12 Z-displacement for the node located at (0.6, 1.0, 1.0). 60
E.13 11-component of the stress in the element nearest (1.6, 0.2, 0.8). 61
E.14 1st principal stress at the node located at (1.6, 0.2, 0.8). 61
E.15 von Mises stress at the node located at (1.6, 0.2, 0.8). 62
Chapter 1

INTRODUCTION

1.1 General features

This manual describes features for the parallel version of the general purpose \emph{Finite Element Analysis Program (FEAP)}. It is assumed that the reader of this manual is familiar with the use of the serial version of \emph{FEAP} as described in the basic user manual.\footnote{1} It is also assumed that the reader of this manual is familiar with the finite element method as describe in standard reference books on the subject (e.g., \emph{The Finite Element Method,} 6th edition, by O.C. Zienkiewicz, R.L. Taylor, et al. \footnote{2, 3, 4}).

The current version of the parallel code modifies the serial version of \emph{FEAP} to interface to the PETSc library system available from Argonne National Laboratories.\footnote{5, 6} In addition the METIS\footnote{7} and ParMETIS\footnote{8} libraries are used to partition each mesh for parallel solution. The present parallel version of \emph{FEAP} may only be used in a UNIX/Linux environment and includes an integrated set of modules to perform:

1. Input of data describing a finite element model;

2. An interface to METIS\footnote{7} to perform a graph partitioning of the mesh \emph{nodes}. A stand alone module exists to also use ParMETIS\footnote{8} to perform the graph partitioning;

3. An interface to PETSc\footnote{5, 6, 9} to perform the parallel solution steps;

4. Construction of solution algorithms to address a wide range of applications; and

5. Graphical and numerical output of solution results.
1.2 Problem solution

The solution of a problem using the parallel versions starts from a standard input file for a serial solution. This file must contain all the data necessary to define nodal coordinates, element connection, boundary condition codes, loading conditions, and material property data. That is, if it were possible, this file must be capable of solving the problem using the serial version. However, at this stage of problem solving the only solution commands included in the file are those necessary to partition the problem for the number of processors to be used in the parallel solution steps.

1.3 Graph partitioning

To use the parallel version of FEAP it is first necessary to construct a standard input file for the serial version of FEAP. Preparation of this file is described in the FEAP User Manual.[1]

1.3.1 METIS version

After the file is constructed and its validity checked, a one processor run of the parallel program may be performed using the GRAPh solution command statement followed by an OUTD solution command. To use this option a basic form for the input file is given as:

```plaintext
FEAP * * Start record and title
   ...
   Control and mesh description data
   ...
   END mesh

BATCH
   GRAPh node numd ! METIS partitions 'numd' nodal domains
   OUTDomains <UNBLocked> ! Creates 'numd' meshes
   END batch
   ...
   STOP
```

where the node on the GRAPh command is optional. The meaning of the UNBLocked option is explained below in Sect. 1.3.3 Using these commands, METIS[7] will split a
problem into numd partitions by nodes and output numd input files for a subsequent parallel solution of the problem.

1.3.2 ParMETIS: Parallel graph partitioning

A stand alone parallel graph partitioner also exists. The parallel partitioner, `partition` (located in the `./parfeap/partition` subdirectory), uses ParMETIS\cite{ParMETIS} to perform the construction of the nodal split. To use this program it is necessary to have a FEAP input file that contains all the nodal coordinate and all the element connection records. That is, there must be a file with the form:

```
FEAP * * Start record and title
   Control record

COORDinates
   All nodal coordinate records
   ...
ELEMent
   All element connection records
   ...
   remaining mesh statements
   ...
END mesh
```

The flat form for an input file may be created from any FEAP input file using the solution command:

```
OUTM
```

This creates an input file with the same name and the extender ".rev". If a TIE mesh manipulation command is used the output mesh will remove unused nodes and renumber the node numbers.

Once the flat input file exists a parallel partitioning is performed by executing the command

```
mpirun -np nump partition numd Ifile
```

where `nump` is the number of processors that ParMETIS uses, `numd` is the number of mesh partitions to create and `Ifile` is the name of the flat FEAP input file. For an input file originally named `Ifilename`, the program creates a graph file with the name `graph.filename`. The graph file contains the following information:
1. The processor assignment for each node (numnp)
2. The pointer array for the nodal graph (numnp+1)
3. The adjacency lists for the nodal graph

To create the partitioned mesh input files the flat input file is executed again (in the same directory containing the graph.filename) as a single processor run of the parallel FEAP together with the solution commands

```
GRAPH FILE
OUTDomains <UNBLocked>
```

See the next section for the meaning of the option UNBLocked.

It is usually possible to also create the graph.file in parallel using the command set

```
OUTMesh
GRAPH PARTition numd
OUTDomains <UNBLocked>
```

where numd is the number of domains to create. In this case the parameter nump is equal to numd. The use of the command OUTMesh is required to ensure that a flat input file is available and after execution it is destroyed.

1.3.3 Structure of parallel meshes

It is assumed that numd represents the number of processors to be used in the parallel solution. Each partition is assigned numpn nodes. The number can differ slightly among the various partitions but is approximately the total number of nodes in the problem divided by numd. In the current release, no weights are assigned to the nodes to reflect possible differences in solution effort. It is next necessary to check which elements are attached to each of these nodes. Once this is performed it is then necessary to check each of the attached elements for any additional nodes that are not part of the current nodal partition. These are called ghost nodes. The sum of the nodes in a partition (numpn) and its ghost nodes defines the total number of nodes in the current partition data file (i.e., the total number of nodes, numnp, in each mesh partition).

In the parallel solution the global equations are numbered sequentially from 1 to the total number of equations in the problem (numteq). The nodes in partition 1 are

1Use of this command set requires the path to the location of the partition program to be set in the pstart.F file located in the parfeap directory.
associated with the first set of equations, the nodes in partition 2 the second set, etc. For each partition, the stiffness and/or the mass matrix is also partitioned and each partition matrix has two parts: (a) a diagonal block for all the nodes in the partition (i.e., numpn nodes) and, (b) off diagonal blocks associated with the ghost nodes as shown in Figure 1.1. In solving a set of linear equations

\[\mathbf{K} \mathbf{d}\mathbf{u} = \mathbf{R} \]

associated with an implicit solution step, the solution vector \(\mathbf{d}\mathbf{u} \) and the residual \(\mathbf{R} \) are also split according to each partition. The residual for each partition contains only the terms associated with the equations of the partition. The solution vector, however, must have both the terms associated with the partition as well as those associated with the equations of its ghost nodes. If the equations are solved by an iterative method using this form of partition it is only necessary to exchange values for the displacement quantities associated with the respective ghost nodes.

There are two forms available to partition the equations: *blocked* and *unblocked*. By default the equations are blocked and permit solution by PETSc’s preconditioned conjugate gradient method with either a Jacobi type preconditioner\(^5\) or the Prometheus multi-grid preconditioner\(^10\). If an unblocked form is requested (i.e., by an OUTMESH UNBLocked command) only the Jacobi type preconditioner may be used.

In the next chapter we describe how the input data files for each partition are organized to accomplish the partitioning just described.

Figure 1.1: Structure of stiffness matrix in partitioned equations.
Chapter 2

Input files for parallel solution

After using the METIS or the ParMETIS partitioning algorithm on the total problem (for example, that given by say the mesh file Ifilename) FEAP produces numd files for the partitions and these serve as input for the parallel solution. Each new input file is named Ifilename.0001, etc. up to the number of partitions specified (i.e., numd partitions).

The first part of each file contains a standard FEAP input file for the nodes and elements belonging to the partition. This is followed by a set of commands that begin with DOMAin and end with END DOMAIN. All of the data contained between the DOMAin and END DOMAIN is produced automatically by FEAP.

The file structure for a parallel solution is shown in Figure 2.1 and is provided only to describe how the necessary data is given to each partition. No changes are allowed to be made to these statements.

2.1 Basic structure of parallel file

Each part of the data following the END MESH statement performs a specific task in the parallel solution. It is important that the data not be altered in any way as this can adversely affect the solution process. Below we describe the role each data set plays during the solution.

2.1.1 DOMAIN - Domain description

The DOMAIN data defines the number of nodes belonging to this partition (numpn), the number of total nodes in the problem (numtn) and the number of total equations in the
FEAP * Start record and title
...
Control and mesh description data for a partition
...
END MESH

DOMAIN
 numpn numtn numteq
<BLOCKed> equations: Block size = ndf
LOCAL to GLOBAL node numbers
...
GETData POINTER nget_pnt
...
GETData VALUES nget_val
...
SENDdata POINTER nsend_pnt
...
SENDdata VALUES nsend_val
...
MATRIX storage
...
<EQUAtion> numbers (If BLOCKed not used)
...
END DOMAIN

INCLUDE solve.filename

STOP

Figure 2.1: Input file structure for parallel solution.
CHAPTER 2. INPUT FILES FOR PARALLEL SOLUTION

problem (numteq). Note that the number of nodes in the partition (numpn) is always less or equal to the number of nodes given on the control record (numnp) due to the presence of the ghost nodes. The sum over all partitions of the number of nodes in each partition (numpn) is equal to the total number of nodes in the problem (numtn).

2.1.2 BLOCked - Block size for equations

This data set is optional. If a blocked form for the equations is requested (this is the default) this data set defines the block size. The block size is always equal to the number of degrees of freedom specified on the control record (i.e., ndf) and the blocked form of the equations is grouped into small blocks of size ndf.

2.1.3 LOCal to GLOBal node numbering

Each record in this set defines three values: (1) a local node number in the partition; (2) the global node associated with the local number; and (3) the global equation block number associated with the local node. The first numpn records in the set are the nodes associated with the current partition the remaining records with the ghost nodes.

2.1.4 GETData and SENDdata - Ghost node retrieve and send

The current partition retrieves (GETData) the solution values for its ghost nodes from other partitions. The data is divided into two parts: (1) A POINTER part which tells the number of values to obtain from each partition and (2) The VALUES list of local node numbers needing values. The pointer data is given as

\[
\begin{align*}
\text{GETData POINTER nparts} \\
& \quad np_1 \\
& \quad np_2 \\
& \quad \ldots \\
& \quad np_{nparts}
\end{align*}
\]

where np_i defines the number in partition-i (note the number should be a zero for the current partition record). The nodal values list is given as

\[
\begin{align*}
\text{GETData VALUES nvalue} \\
& \quad \text{local_node}_1
\end{align*}
\]
local_node_2
...
local_node_nvalue

The local_node_i numbers are grouped so that the first np_1 are obtained from processor 1, the next np_2 from processor 2, etc. The local_node_1 is the number of a local ghost node to be obtained from another processor and may appear only once in the list of GETData VALUES.

A corresponding pair of lists is given for the data to be sent (SENDdata) to the other processors. The lists have identical structure to the GETData lists and are given by

```
SENDdata POINter nparts
 np_1
 np_2
 ...
 np_nparts
```

and

```
SENDdata VALUES nvalue
 local_node_1
 local_node_2
 ...
 local_node_nvalue
```

where again the local_node_i numbers are grouped so that the first np_1 are sent to processor 1, the next np_2 to processor 2, etc. It is possible for a local node number to appear more than once in the SENDdata VALUES list as it could be a ghost node for more than one other partition.

2.1.5 MATRix storage – equation structure

Each equation in the global matrix consists of the number of terms that are associated with the current partition and the number of terms associated with other partitions. This information is provided for each equation (equation block) by the MATRix storage data set. Each record in the set is given by the global equation number followed by the number of terms associated with the current partition and then the number of terms associated with other partitions. The use of this data is critical to obtain rapid assembly of the global matrices by PETSc. If it is incorrect the assembly time will be very large compared to the time needed to compute the matrix coefficients.
When the equations are blocked the data is given for each block number. In the blocked form every node has \(n_{df} \) equations. Thus, the first \(n_{df} \) equations are associated with block 1, the second with block 2, etc. The total number of equations \(n_{umteq} \) for this form is \(n_{umtn} \times n_{df} \). Each record of the MATRix storage data is given by the global block number, the number of blocks associated with the current partition and the number of blocks associated with other partitions. For any node in which all degree-of-freedoms (DOF) are of displacement type the number of blocks in the current partition will be 1 and the number in other blocks will be zero. That is, the equations for any node in which all DOF’s are fixed will be given as:

\[
I d\bar{u}_{a} = R_{a} = d\bar{u}
\]

where \(d\bar{u} \) denotes a specified valued for the solution.

2.1.6 EQUAtion number data

This data set is not present when the equations are blocked. However, when the equations are unblocked it is necessary to fully describe the equation numbering associated with each node in the partition. This is provided by the EQUAtion number data set. The set consists of \(n_{ump} \) records which contain the local node number followed by the global equation number for every degree-of-freedom associated with the node. If a degree-of-freedom is restrained (i.e., of displacement type) the equation is not active and a zero appears. This form results in fewer unknown values but may not be used with any equation solution requiring a blocked form (in particular, Prometheus).

2.1.7 END DOMAIN record

The parallel data is terminated by the END DOMAIN record. It is followed by the solution commands.
Chapter 3

Solution process

Once the parallel input mesh files are created an execution of the parallel version of feap may be performed using the command line statement

```bash
-@${MPIRUN} -s all -np $(NPROC) $(FEAPRUN) -ksp_type cg -pc_type jacobi
```

or

```bash
-@${MPIRUN} -s all -np $(NPROC) $(FEAPRUN) -ksp_type cg -pc_type prometheus
```

(for details on other required and optional parameters see the makefile in the parfeap subdirectory). The parameters setting the number of processors (NPROC) and the execution path FEAPRUN must be defined before issuing the command.

Once FEAP starts the input file should be set to Ifilename.0001 where filename is the name of the solution file to be solved. Each processor reads its input file up to the END MESH statement and then starts processing command language statements.

In a parallel solution using FEAP the same command language statements must be provided for each partition. This is accomplished using the statement

```bash
INCLUD solve.filename
```

where filename is the name of the input data file with the leading I and the trailing partition number removed. Thus for the file named Iblock.0001 the command is given as solve.block. All solution commands are then placed in a file with this name and can include both BATCH and INTERactive commands. For example a simple solution may be given by the commands

```bash
11
```
placed in the \texttt{solve.filename} file. Note that both batch and interactive modes of solution are optionally included. Interactive commands need only be entered once and are sent to other processors automatically if in the \texttt{makefile} for initiating the execution of the parallel \textit{FEAP} the target parameter \texttt{-s all} appears. In the subsequent subsections we describe some of the special commands that control the parallel execution mode of \textit{FEAP}.

3.1 Command language statements

Most of the standard command language statements available in the serial version of \textit{FEAP} (see users manual [1]) may be used in the parallel version of \textit{feap}. New commands are available also that are specifically related to performing a parallel solution.

3.1.1 PETSc Command

The \texttt{PETSc} command is used to activate the parallel solution process. The command

\begin{verbatim}
PETSc \texttt{<ON,OFF>}
\end{verbatim}

may be used to turn on and off the parallel execution. It is only required for single processor solutions and is optional when two or more processors are used in the solution process. When required, it should always be the first solution command.

The command may also be used with the \texttt{VIEW} parameter to create outputs for the tangent matrix, solution residual or mass matrix. Thus, use as

\begin{verbatim}
PETSc VIEW
MASS
PETSc NOVIEW
\end{verbatim}

will create a file named \texttt{mass.m} that contains all the non-zero values of the \textit{total} mass matrix. The parameter \texttt{VIEW} turns on output arrays and this remains in effect for all
commands until the command is given with the NOVi ew parameter. The file is created in a format that may be directly used by MATLAB. This command should only be used with small problems to verify the correctness of results as large files will result otherwise.

3.2 Solution of linear equations

The parallel version of FEAP can use all of the SLES (linear solvers) available in PETSc as well as the parallel multigrid solver, Prometheus. The actual type of linear solver used is specified in the makefile located in the parfeap directory (see, Sect. 3 above). Once the solution is initiated the solution of linear equations is performed whenever a TANG,1 or SOLVe command is given.

The types of solvers and the associated preconditioners tested to date are described in Table 3.1.

<table>
<thead>
<tr>
<th>Solver</th>
<th>Preconditioner</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG</td>
<td>Jacobi</td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>Prometheus</td>
<td>Generally requires fewest iterations</td>
</tr>
<tr>
<td>MINRES</td>
<td>Jacobi</td>
<td></td>
</tr>
<tr>
<td>MINRES</td>
<td>Prometheus</td>
<td></td>
</tr>
<tr>
<td>GMRES</td>
<td>Jacobi</td>
<td></td>
</tr>
<tr>
<td>GMRES</td>
<td>Prometheus</td>
<td></td>
</tr>
<tr>
<td>GMRES</td>
<td>Block Jacobi</td>
<td>Often gives indefinite factor.</td>
</tr>
<tr>
<td>GMRES</td>
<td>ASM(ILU)</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.1: Linear solvers and preconditioners tested.

The solvers, together with the necessary options for preconditioning may be specified in the Makefile as parameters to the mpirun command. Two examples of possible options are contained in the Makefile.

3.2.1 Tolerance for equation solution

The basic form of solution for linear equations is currently restricted to a preconditioned conjugate gradient (PCG) method. Two basic solution forms are defined in the makefile contained in the parfeap subdirectory. The first (feaprun) uses the solver contained in the PETSc library and the second is Prometheus (feaprun-mg) available from Columbia University. In general the performance of Prometheus is much better than the first form.
Termination tolerances for the solvers are given by either

\[\text{TOL ITER} \, \text{rtol} \, \text{atol} \, \text{dtol} \]

or

\[\text{ITER TOL} \, \text{rtol} \, \text{atol} \, \text{dtol} \]

where \text{rtol} is the tolerance for the preconditioned equations, \text{atol} the tolerance for the original equations and \text{dtol} a value at which divergence is assumed. The default values are:

\[\text{rtol} = 1 \times 10^{-8} \; \text{;} \; \text{atol} = 1 \times 10^{-16} \; \text{and} \; \text{dtol} = 1 \times 10^{16} \]

For many problems it is advisable to check that the actual solution is accurate since termination of the equation solution is performed based on the \text{rtol} value. A check should be performed using the command sequence

\[\text{TANG,1} \]
\[\text{LOOP,1} \]
\[\text{FORM} \]
\[\text{SOLV} \]
\[\text{NEXT} \]

since the \text{TANG} command has significant set up costs, especially for Prometheus. Indeed, for some problems more than one iteration is needed in the loop.

3.2.2 GLIST & GNODE: Output of results with global node numbers

In normal execution each partition creates its own output file (e.g., \text{Ofilename}_0001, etc.) with printed data given with the \text{local} node and element numbers of the processor’s input data file. In some cases the global node numbers are known and it is desired to identify which processor to which the node is associated. This may be accomplished by including a \text{GLIST} command in the solution statements along with the list of \text{global} node numbers to be output. The option is restricted to 3 lists, each with a maximum of 100 nodes. The command sequence is given by:

\[\text{BATCH} \]
\[\text{GLIST,,}<1,2,3> \]
list of global node numbers, 8 per record
! blank termination record

The list will be converted by each processor into the local node numbers to be output using the command

```
DISP LIST <1,2,3>
```

The command may also be used with VELOcity, ACCEleration, and STREss. See manual pages in the FEAP Users Manual.[1]

It is also possible to directly output the global node number associated with individual local node numbers using the command statement

```
DISP GNODE nstart nend ninc
```

where nstart and nend are global node numbers. This command form also may be used with VELOcity, ACCEleration, and STREss.

3.3 Eigenproblem solution for modal problems

The computation of the natural modes and frequencies of free vibration of an undamped linear structural problem requires the solution of the general linear eigenproblem

$$K \Phi = M \Phi \Lambda$$

In the above K and M are the stiffness and mass matrices, respectively, and \(\Phi \) and \(\Lambda \) are the normal modes and frequencies squared. Normally, the constraint

$$\Phi^T M \Phi = I$$

is used to scale the eigenvectors. In this case one also obtains the relation

$$\Phi^T K \Phi = \Lambda$$

3.3.1 Subspace method solutions

The subspace algorithm contained in FEAP has been extended to solve the above problem in a parallel mode. The use of the subspace algorithm requires a linear solution of the equations

$$K x = y$$
for each vector in the subspace and for each subspace iteration. The parallel subspace solution is performed using the command set

\begin{verbatim}
TANGE
MASS <LUMPed,CONSistent>
PSUBspace <print> nmodes <nadded>
\end{verbatim}

where texttttnmodes is the desired number of modes, texttttnadded is the number of extra vectors used to accelerate the convergence (default if maximum of nmodes and 8) and print produces a print of the subspace projections of \(K \) and \(M \). The accuracy of the computed eigenvalues is the maximum of 1.d - 12 and the value set by the TOL solution command. The method may be used with either a lumped or a consistent mass matrix.

If it is desired to extract 10 eigenvectors with 8 added vectors and 20 iterations are needed to converge to an acceptable error it is necessary to perform 360 solutions of the linear equations. Thus, for large problems the method will be very time consuming.

3.3.2 Arnoldi/Lanczos method solutions

In order to reduce the computational effort the Arnoldi/Lanczos methods implemented in the ARPACK module available from Rice University\cite{12} has been modified to work with the parallel version of \textit{FEAP}.

Two modes of the ARPACK solution methods are included in the program:

1. Mode 1: Solves the problem reformed as

\[M^{-1/2} K M^{-1/2} \Psi = \Psi \Lambda \]

where

\[\Phi = M^{-1/2} \Psi \]

This form is most efficient when the mass matrix is diagonal (lumped) and, thus, in the current release of parallel \textit{FEAP} is implemented only for diagonal (lumped) mass forms. This mode form is specified by the solution command set

\begin{verbatim}
TANGE
MASS LUMPed
PARPack LUMPed nmodes <maxiters> <eigtol>
\end{verbatim}

where nmodes is the number of desired modes. Optionally, maxiters is the number of iterations to perform (default is 300) and eigtol the solution tolerance on eigenvalues (default is the maximum of 1.d - 12 and the values set by the command TOL.
2. Mode 3: Solves the general linear eigenproblem directly and requires solution of the linear problem
\[\mathbf{K} \mathbf{x} = \mathbf{y} \]
for each iteration. Fewer iterations are normally required than in the subspace method, however, the method is generally far less efficient than the Mode 1 form described above. This form is given by the set of commands

\[
\text{TANGent} \\
\text{MASS <LUMPed,CONSistent>} \\
\text{PARPack <SYMMetric> nmodes <maxiters> <eigtol>}
\]

Use of the command MASS alone also will employ a consistent mass (or the mass produced by the quadrature specified).

3.4 Graphics output

During a solution the graphics commands may be given in a standard manner. However, each processor will open a graphics window and display only the parts that belong to that processor. Scaling is also done processor by processor unless the PLOT RANGE command is used to set the range of a set of plot values.

3.4.1 GPLOt command

An option does exist to collect all the results together and present on a single graphics window. This option also permits postscript outputs to be constructed and saved in files. To collect the results together it is necessary to write the results to disk for each item to be graphically presented. This is accomplished using the GPLOt command. This command has the options

\[
\text{GPLOt DISPlacement n} \\
\text{GPLOt STREss n} \\
\text{GPLOt PSTRes n}
\]

where \(n \) denotes the component of a displacement (DISP), nodal stress (STRE) or principal stress (PSTRE). Each use of the command creates a file on each processor with the form

\[\text{Gproblem_domain.xyyyy} \]
where \texttt{problem_domain} is the name of the problem file for the \texttt{domain}; \texttt{x} is \texttt{d}, \texttt{s} or \texttt{p}
for a displacement, stress or principal stress, respectively; and \texttt{yyyy} is a unique plot
number (it will be between 0001 and 9999).

\subsection{NDATa command}

Once the \texttt{GPLOt} files have been created they may be plotted using a \textit{serial execution}
of the parallel \texttt{FEAP} program (i.e., using the \texttt{Iproblem} file. The command may be given
in \texttt{INTERactive} mode only as one of the options:

\begin{verbatim}
 Plot > NDATa DISPl n
 Plot > NDATa STRess n
 Plot > NDATa PSTRess n
\end{verbatim}

where \texttt{n} is the value of \texttt{yyyy} used to write the file.

\textbf{WARNING:} Plots by \texttt{FEAP} use substantial memory and thus this option may not
work for very large problems. One should minimize the number of commands used
during input of the problem description (i.e., remove input commands in the mesh
that create new memory).
Bibliography

Appendix A

Solution Command Manual Pages

FEAP has a few options that are used only to solve parallel problems. The commands are additions to the command language approach in which users write each step using available commands. The following pages summarize the commands currently added to the parallel version of FEAP.
Other options of this command are described in the FEAP User Manual. The command DISplacement may be used to print the current values of the solution *generalized displacement* vector associated with the *global node numbers* of the original mesh. The command is given as

\[
\text{disp,gnod,n1,n2,n3}
\]

prints out the current solution vector for global nodes \(n_1 \) to \(n_2 \) at increments of \(n_3 \) (default increment = 1). If \(n_2 \) is not specified only the value of node \(n_1 \) is output. If both \(n_1 \) and \(n_2 \) are not specified only the first node solution is reported.
The command **GLISt** is used to specify lists of *global* node numbers for output of nodal values. It is possible to specify up to three different lists where the list number corresponds to **n1** (default = 1). The list of nodes to be output is input with up to 8 values per record. The input terminates when less than 8 values are specified or a blank record is encountered. No more than 100 items may be placed in any one list.

List outputs are then obtained by specifying the command:

```
name,list,n1
```

where *name* may be **DISPlacement**, **VELOcity**, **ACCEleration**, or **STREss** and **n1** is the desired list number.

Example:

```
BATCH
  GLISt,,1
END
1,5,8,20

BATCH
  DISP,LIST,1
  ...
END
```

The global list of nodes is processed to determine the processor and the associated local node number. Each processor then outputs its active values (if any) and gives both the local node number in the partition as well as the global node number.
Use of plot commands during execution of the parallel version of *FEAP* create the same number of graphic windows as processors used to solve the problem. Each window contains only the part of the problem contained on that processor.

The use of the `GPLOt` command is used to save files containing the results for all nodal displacements, velocities, accelerations or stresses in the total problem. The only action occurring after the use of this command is the creation of a file containing the current results for the quantity specified. Repeated use of the command creates files with different names.

These results may be processed by a single processor run of the problem using the mesh for the total problem. To display the nodal values command `NDATa` is used. See manual page on `NDATa`.

```
gplo disp n  
gplo velo n  
gplo acce n  
gplo stre n  
```
The use of the \texttt{GRAPH} command activates the interface to the \textit{METIS} multilevel partitioner. The partition into \texttt{num.d} parts is performed based on a nodal graph. The nodal partition divides the total number of nodes (i.e., \texttt{numnp} values) into \texttt{num.d} nearly equal parts.

If the \texttt{GRAPH} command is given with the option \texttt{file} the partition data is input from the file \texttt{graph.filename} where \texttt{filename} is the same as the input file without the leading I character. The data contained in the \texttt{graph.filename} is created using the stand alone \texttt{partitioner} program which employs the \textit{PARMETIS} multilevel partitioner.

It is also possible to execute \textit{PARMETIS} to perform the partitioning directly during a mesh input. It is necessary to have a mesh which contains all the nodal coordinate and element data in the input file. This is accomplished using the command set

\begin{verbatim}
OUTMesh
 GRAPH PARTition num_d
 OUTDomain meshes
\end{verbatim}

where \texttt{num.d} is the number of domains to create. The command \texttt{OUTMesh} creates a file with all the nodal and element data and is destroyed after execution of the \texttt{GRAPH} command.
The **ITERative** command sets the mode of solution to iterative for the linear algebraic equations generated by a **TANGent**. Currently, iterative options exist only for symmetric, positive definite tangent arrays, consequently the use of the **UTANgent** command should be avoided. An iterative solution requires the sparse matrix form of the tangent matrix to fit within the available memory of the computer.

Serial solutions

In the serial version the solution of the equations is governed by the relative residual for the problem (i.e., the ratio of the current residual to the first iteration in the current time step). The tolerance for convergence may be set using the **ITER,TOL,v1,v2** option. The parameter v1 controls the relative residual error given by

\[
(R^T R)_i^{1/2} \leq v1 (R^T R)_0^{1/2}
\]

and, for implementations using **PETSc** the parameter v2 controls the absolute residual error given by

\[
(R^T R)_i^{1/2} \leq v2
\]

The default for v1 is 1.0d-08 and for v2 is 1.0d-16. By default the maximum number of iterations allowed is equal to the number of equations to be solved, however, this may be reduced or increased by specifying a positive value of the parameter **icgit**.

The symmetric equations are solved by a preconditioned conjugate gradient method. Without options, the preconditioner is taken as the diagonal of the tangent matrix. Options exist to use the diagonal nodal blocks (i.e., the \(ndf \times ndf\) nodal blocks, or reduced size blocks if displacement boundary conditions are imposed) as the preconditioner. This option is used if the command is given as **ITERative,BPCG**. Another option is to use a banded preconditioner where the non-zero profile inside a specified half band is used. This option is used if the command is given as **ITERative,PPCG,v1**, where v1 is the size of the half band to use for the preconditioner.

The iterative solution options currently available are not very effective for poorly conditioned problems. Poor conditioning occurs when the material model is highly non-
linear (e.g., plasticity); the model has a long thin structure (like a beam); or when structural elements such as frame, plate, or shell elements are employed. For compact three dimensional bodies with linear elastic material behavior the iterative solution is often very effective.

Another option is to solve the equations using a direct method (see, the DIREct command language manual page).

Parallel solutions

For the parallel version the control of the PETSc preconditioned iterative solvers is controlled by the command

\[\text{ITER TOL itol atol dtol} \]

where \(\text{itol} \) is the tolerance for the \textit{preconditioned} equations (default \(1.d - 08 \)), \(\text{atol} \) is the tolerance for the original equations (default \(1.d - 16 \)) and \(\text{dtol} \) is a divergence protection when the equations do not converge (default \(1.d + 16 \)).
This command is used in a single processor execution using the mesh for the total problem. It is necessary for files to be created during a parallel execution using the GPLOt command (See manual page on GPLOt).

The command is given by

```
NDATa DISPlacement num
```

where the parameter `num` is the number corresponding to the order the DISPlacement are created. Thus, the command sequence

```
NDATa DISPlacement 2
NDATa STREss 2
```

would display the results for the second files created for the displacements and stresses.
The use of the `OUTDomain` command may only be used after the `GRAPh` command partitions the mesh into `num_d` parts (see `GRAPh` command language page for details).

Using the command `OUTDomain` or `OUTDomain BLOCKed` creates `num_d` input files for a subsequent parallel solution in which the coefficient arrays will be created in a *blocked* form. The parameter `bsize` defines the block size and *must be an integer divisor of`ndf`. That is if `ndf = 6` then `bsize` may be 1, 2, 3, or 6. By default each block in the equations has a size `ndf`. The setting of the block size can significantly reduce the amount of storage needed to store the sparse coefficient matrix created by `TANGent` or `UTANgent` when a problem has a mix of element types. For example if a problem has a large number of solid elements with 3 degrees of freedom per node and additional frame or shell elements with 6 degrees of freedom per node, specifying `bsize = 3` can save considerable memory.
The use of the *PETSc* command turns *on* or *off* to activate or deactivate parallel solution options, respectively. To turn on parallel computing the command may be given in the simple form: *PETSc*. When more than one partition is created, i.e., the number of solution processors is 2 or more, the *PETSc* option is on by default. The command must be the first command of the command language program when only 1 processor is used.

The option *PETSc View* will result in a file for all the non-zero coefficients in the tangent matrix to be output into a file. The output is in a *MATLAB* format. This option should only be used for very small problems to check that a formulation produces correct results (i.e., there is another set of terms to which a comparison is to be made). The option is turned off using the statement *PETSc Noview*. The default is *Noview*.
Other options for this command are given in the *FEAP* User Manual. The STREss command is used to output nodal stress results at *global node numbers* n_1 to n_2 at increments of n_2 (default $= 1$).

The command specified as:

\[
\text{stre,gnode,n1,n2,n3}
\]

If \(n_3\) is not given an increment of 1 is used. If \(n_2\) is not given only values for node \(n_1\) are output. If \(n_1\) is not specified the values at global node 1 are output.
The TOL command is used to specify the solution tolerance values to be used at various stages in the analysis. Uses include:

1. Convergence of nonlinear problems in terms of the norm of energy in the current iterate (the inner, dot, product of the displacement increment and the solution residual vectors).

2. Convergence of iterative solution of linear equations.

3. Convergence of the subspace eigenpair solution which is measured in terms of the change in subsequent eigenvalues computed.

The basic command, TOL,,tol, without any arguments sets the parameter tol used in the solution of non-linear problems where the command sequence

```
LOOP,,30
  TANG,,1
NEXT
```

is given. In this case, the loop is terminated either when the number of iterations reaches 30 (or whatever number is given in this position) or when the energy error is less than tol. The energy error is given by

\[E_i = (\mathbf{d}\mathbf{u}^T\mathbf{R})_i \leq tol \ (\mathbf{d}\mathbf{u}^T\mathbf{R})_0 = E_0 \]

in which \(\mathbf{R} \) is the residual of the equations and \(\mathbf{d}\mathbf{u} \) is the solution increment. The default value of tol for the solution of nonlinear problems is 1.0d-16.

The TOL command also permits setting a value for the energy below which convergence is assumed to occur. The command is issued as TOL,ENERgy,v1 where v1 is the value of the converged energy (i.e., it is equivalent to the tolerance times the maximum energy value). Normally, FEAP performs nonlinear iterations until the value of the energy is less than the TOLERance value times the value of the energy from the first iteration.
as shown above. However, for some transient problems the value of the initial energy is approaching zero (e.g., for highly damped solutions which are converging to some steady state limit). In this case, it is useful to specify the energy for convergence relative to early time steps in the solution. Convergence will be assumed if either the normal convergence criteria or the one relative to the specified maximum energy is satisfied.

The TOL command also permits setting the maximum energy value used for convergence. The command is issued as

```plaintext
TOL, EMAX]imum, v1
```

where \(v1 \) is the value of the maximum energy quantity. Note that the TIME command sets the maximum energy to zero, thus, the value of EMAXimum must be reset after each time step using, for example, a set of commands:

```plaintext
LOOP, time, n
  TIME
  TOL, EMAX, 5.e+3
  LOOP, newton, m
    TANG,, 1
    NEXT
  etc.
  NEXT
```

to force convergence check against a specified maximum energy. The above two forms for setting the convergence are nearly equivalent; however, the ENERGY tolerance form can be set once whereas the EMAXimum form must be reset after each time command.

The command

```plaintext
TOL ITERation itol, atol, dtol
```

is used to control the solution accuracy when an iterative solution process is used to solve the equations

\[
K \delta u = R
\]

In this case the parameter \(itol \) sets the relative error for the solution accuracy, i.e., when

\[
(R^T R)_i^{1/2} \leq itol (R^T R)_0^{1/2}
\]

The parameter \(atol \) is only used when solutions are performed using the \texttt{KSP} schemes in a PETSc implementation to control the absolute residual error

\[
(R^T R)_i^{1/2} \leq atol
\]
The **dtol** parameter is used to terminate the solution when divergence occurs. The default for **itol** is $1.0d^{-8}$, that for **atol** is $1.0d^{-16}$ and for **dtol** is $1.0d^{+16}$.
Appendix B

Program structure

B.1 Introduction

This section describes the parallel infrastructure for the general purpose finite element program, \textit{FEAP}.\footnote{1} The current version of the parallel code modifies the serial version of \textit{FEAP} to interface to the PETSc library system available from Argonne National Laboratories.\footnote{5,6} In addition, the METIS\footnote{7} and ParMETIS\footnote{8} libraries are used to partition each mesh for parallel solution. The necessary modifications and additions for the parallel features are contained in the directory \texttt{parfeap}. There are five sub-directories contained in \texttt{parfeap}:

1. \texttt{arpack}: Contains the subprograms and include files needed for the ARPACK eigen solution module (see Section 3.3).

2. \texttt{blas}: Contains Fortran versions of the BLAS routines used by \textit{FEAP}. It is recommended that whenever possible a BLAS library be used. These routines are provided only for cases where no library is available.

3. \texttt{lapack}: Contains the subprograms from LAPACK used in the parallel version.

4. \texttt{partition}: Contains the program and include file used to construct the partition graph using ParMETIS (see Section 1.3).

5. \texttt{windows}: Contains the replacement for subprogram \texttt{pmetis.f} for use in a Windows version of the program.\footnote{N.B. No testing of any parallel solutions other than mesh partitioning using a serial version of \textit{FEAP} has been attempted to date.}

11N.B. No testing of any parallel solutions other than mesh partitioning using a serial version of \textit{FEAP} has been attempted to date.
B.2 Building the parallel version

In order to build a parallel version of FEAP it is necessary first to install and compile a serial version (see instructions in the FEAP Installation manual[13]). Once a serial version is available and tested the routines in the arpack should be compiled using the command

\begin{verbatim}
make
\end{verbatim}

while in the arpack subdirectory. This will build an archive named arpacklib.a. The parallel version of FEAP is then compiled by executing the command

\begin{verbatim}
make feap
\end{verbatim}

from the parfeap directory. If any subprogram are missing it may be necessary to compile the programs in the lapack and/or blas subdirectories, modify the Makefile in the parfeap directory and then recompile the program using the above command. If any errors still exist it is necessary to ensure that all definitions contained in the Makefile have been properly set using setenv and/or that PETSc has been properly installed.
Appendix C

Element modification features

The use of the eigensolver with the LUMPed option requires all elements to form a valid diagonal (lumped) mass matrix. One option to obtain a lumped mass is the use of a quadrature formula that samples only at nodes.[2] In this case all element that use C_0 interpolation forms have mass coefficients computed from

$$M_{ab} = \int_{\Omega_e} N_a \rho N_b \, dV \approx \sum_l N_a(\xi_l) \rho N_b(\xi_l) j(\xi_l) W_l$$

where ξ_l and W_l are the quadrature points and $j(\xi_l)$ the jacobian of the coordinate transformation. For C_0 interpolations the shape functions have the property[2]

$$N_a(\xi_b) = \delta_{ab} = \begin{cases} 1 & ; a = b \\ 0 & ; a \neq b \end{cases}$$

Thus if $\xi_l = \xi_b$ (the nodal points) and $W_l > 0$ the mass matrix produced will be diagonal and positive definite.

For quadrilateral and brick elements of linear order use of product forms of trapezoidal rule sample at all nodes and satisfy the above criterion. Similarly use of Simpson's rule for quadratic order quadrilaterals or bricks also satisfies the above rule. Similarly, for triangular and tetrahedral elements of linear order nodal integrations has positive weights and produces a valid diagonal mass. However, for a 6-node quadratic order triangle or a 10-node quadratic order tetrahedron no such formula exists. Indeed, the nodal quadrature formula for these elements samples only at the mid-edge nodes and has zero weights W_b at the vertex nodes. Such a formula is clearly not valid for use in computing a diagonal mass matrix. The problem can be cured however by merely adding an addition node at the baricenter of the triangle or tetrahedron and thus producint a 7-node or 11-node element, respectively. Another advantage exists in that these elements may also be developed as mixed models that permit solution of problems in which the material behavior is nearly incompressible (e.g., see references [2] and [3]).
FEAP has been modified to include use of 7-node triangular and 11-node tetrahedral elements. Furthermore, nodal quadrature formulas have been added and may be activated for each material by including the quadrature descriptor

```
QUADrature NODA1
```

or, alternatively, for the whole problem as

```
GLOBal
   QUADrature NODA1
   ! Other global options or blank record to terminate
```

Existing meshes of 10-node tetrahedral elements may be converted using the user function `umacr0.f` included in the subdirectory `parfeap`. A similar function to convert 6-node triangular element may be easily added using this function as a model.

The solution of problems composed of quadratic order tetrahedral elements can be difficulty when elements have very bad aspect ratios or have large departures from straight edges. A more efficient solution is usually possible using linear order elements. Two options are available to convert 10-node tetrahedral elements to 4-node tetrahedral ones. These are available as user functions in subdirectory `parfeap`. The first option converts each 10-node element to a single 4-node element. This leads to a problem with many fewer nodes and, thus, is generally quite easy to solve compared to the original problem. This option is given in subprogram `umacr8.f`. A second option keeps the same number of nodes and divides each 10-node element into eight (8) 4-node elements. This option is given in subprogram `umacr9.f`.

One final option exists to modify meshes with 10-node elements. In this option all curved sides are made straight and mid-edge nodes are placed at the center of each edge. This option is given in subprogram `umacr6.f`.
Appendix D

Added subprograms

The tables below describe the modifications and extensions to create the current parallel version. Table D.1 describe modifications made to subroutines contained in the serial version. Table D.2 presents the list of subprograms added to create the mesh for each individual processor and to permit basic parallel solution steps. Table D.3 presents the list of subprograms modified for subspace eigensolution and those added to interface to the ARPACK Arnoldi/Lanczos eigensolution methods. Finally, Table D.4 describes the list of user functions that may be introduced to permit various additional solution steps with the parallel or serial version.
Table D.1: Subprograms modified for parallel solutions.

<table>
<thead>
<tr>
<th>Filename</th>
<th>Description of actions performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>filnam.F</td>
<td>Set up file names for input/output</td>
</tr>
<tr>
<td>fpp sop.F</td>
<td>Output postscript file from each processor</td>
</tr>
<tr>
<td>gamma1.f</td>
<td>Compute energy for line search</td>
</tr>
<tr>
<td>alloc.f</td>
<td>Allocate memory for arrays</td>
</tr>
<tr>
<td>pbases.F</td>
<td>Parallel application of multiple base excitations for modal solutions</td>
</tr>
<tr>
<td>pcontr.f</td>
<td>Main driver for FEAP</td>
</tr>
<tr>
<td>pdelfl.f</td>
<td>Delete all temporary files at end of execution</td>
</tr>
<tr>
<td>pextnd.f</td>
<td>Dummy subprogram for external node determination</td>
</tr>
<tr>
<td>pform.f</td>
<td>Parallel driver to compute element arrays and assemble global arrays</td>
</tr>
<tr>
<td>plstop.F</td>
<td>Closes open plot windows, deletes arrays and stops execution</td>
</tr>
<tr>
<td>pmacio.F</td>
<td>Controls input of solution commands</td>
</tr>
<tr>
<td>pmacr.f</td>
<td>Solution command driver: Adds call to pmacr7 for parallel options</td>
</tr>
<tr>
<td>pmacr1.f</td>
<td>Solution command driver 1</td>
</tr>
<tr>
<td>pmacr3.f</td>
<td>Solution command driver 3</td>
</tr>
<tr>
<td>pmodal.f</td>
<td>Parallel modal solution of linear transient problems</td>
</tr>
<tr>
<td>pmodin.F</td>
<td>Input initial conditions for jmodal solutions</td>
</tr>
<tr>
<td>pplotf.F</td>
<td>Driver for plot commands</td>
</tr>
<tr>
<td>premas.f</td>
<td>Initialize data for mass computation</td>
</tr>
<tr>
<td>prtdis.f</td>
<td>Output nodal displacement values for real solutions: Includes global node numbers for parallel runs</td>
</tr>
<tr>
<td>prtstr.f</td>
<td>Output nodal stress values: Includes global node numbers for parallel runs</td>
</tr>
<tr>
<td>pstart.F</td>
<td>Set starting values and control names of data files for each processor</td>
</tr>
<tr>
<td>scalev.F</td>
<td>Parallel scale of vector to have maximum element of +1.0</td>
</tr>
</tbody>
</table>
Table D.2: New subprograms added for parallel solutions.

<table>
<thead>
<tr>
<th>Filename</th>
<th>Description of actions performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>adomnam.f</td>
<td>Set file extender for processor number</td>
</tr>
<tr>
<td>bserchi.f</td>
<td>Use binary search to find a specified node number</td>
</tr>
<tr>
<td>p_mmetis.f</td>
<td>METIS driver to compute partition graph</td>
</tr>
<tr>
<td>pcompress.f</td>
<td>Compute compressed form of element array</td>
</tr>
<tr>
<td>pddot.f</td>
<td>Parallel dot product</td>
</tr>
<tr>
<td>pdgetv0.f</td>
<td>Generates random vector for ARPACK and forces residual to be in range of operator</td>
</tr>
<tr>
<td>pdnrm2.f</td>
<td>Parallel Euclidian norm of a vector</td>
</tr>
<tr>
<td>pdomain.F</td>
<td>Input of domain data for parallel solutions</td>
</tr>
<tr>
<td>petscmi.F</td>
<td>Sends and receives maximum value of data</td>
</tr>
<tr>
<td>petscr.F</td>
<td>Sends and receives real data values</td>
</tr>
<tr>
<td>pmacrsr7.F</td>
<td>Solution command driver 7: Parallel features added</td>
</tr>
<tr>
<td>pminvsqr.F</td>
<td>Modify element arrays for effects of non-zero specified displacements</td>
</tr>
<tr>
<td>pmodify.f</td>
<td>Modify element arrays for effects of non-zero specified displacements</td>
</tr>
<tr>
<td>pparlo.f</td>
<td>Parallel set of assembly information for element arrays</td>
</tr>
<tr>
<td>prwext.F</td>
<td>Add extenders to parallel data files</td>
</tr>
<tr>
<td>psetb.F</td>
<td>Transfer PETSC vector to local arrays</td>
</tr>
<tr>
<td>smodify.f</td>
<td>Modify blocked element tangent for imposed displacements</td>
</tr>
<tr>
<td>arfeaps.f</td>
<td>Serial ARPACK driver for symmetric eigenproblems</td>
</tr>
<tr>
<td>aropk.f</td>
<td>Serial main operator for ARPACK Mode 1 and Mode 3 eigensolution</td>
</tr>
<tr>
<td>aropm.f</td>
<td>Serial mass operator for ARPACK eigensolution</td>
</tr>
<tr>
<td>parfeaps.F</td>
<td>Parallel ARPACK driver for symmetric eigenproblems</td>
</tr>
<tr>
<td>parkv.F</td>
<td>Parallel ARPACK routine to compute product of stiffness times vector</td>
</tr>
<tr>
<td>parmv.F</td>
<td>Parallel ARPACK routine to compute product of mass times vector</td>
</tr>
<tr>
<td>paropk.F</td>
<td>Parallel ARPACK application of stiffness operator</td>
</tr>
<tr>
<td>paropm.F</td>
<td>Parallel ARPACK application of mass operator</td>
</tr>
<tr>
<td>pdsaitr.f</td>
<td>Parallel ARPACK reverse communication interface for ARPACK</td>
</tr>
<tr>
<td>pdsau2p2.f</td>
<td>Parallel ARPACK intermediate level interface called by pdsau2p2</td>
</tr>
<tr>
<td>pdsau2pd.f</td>
<td>Parallel ARPACK reverse communication interface for implicitly restarted Arnoldi Iteration</td>
</tr>
<tr>
<td>pdsau2pd.f</td>
<td>Parallel ARPACK computation of converged eigenvalues and vectors</td>
</tr>
<tr>
<td>psbusp.F</td>
<td>Parallel subspace eigenpair driver</td>
</tr>
<tr>
<td>psproja.f</td>
<td>Parallel subspace projection of stiffness matrix</td>
</tr>
<tr>
<td>psprojb.F</td>
<td>Parallel subspace projection of mass matrix</td>
</tr>
</tbody>
</table>

Table D.3: Added or modified subprograms for eigenpair extraction.

<table>
<thead>
<tr>
<th>Filename</th>
<th>Description of actions performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>arfeaps.f</td>
<td>Serial ARPACK driver for symmetric eigenproblems</td>
</tr>
<tr>
<td>aropk.f</td>
<td>Serial main operator for ARPACK Mode 1 and Mode 3 eigensolution</td>
</tr>
<tr>
<td>aropm.f</td>
<td>Serial mass operator for ARPACK eigensolution</td>
</tr>
<tr>
<td>parfeaps.F</td>
<td>Parallel ARPACK driver for symmetric eigenproblems</td>
</tr>
<tr>
<td>parkv.F</td>
<td>Parallel ARPACK routine to compute product of stiffness times vector</td>
</tr>
<tr>
<td>parmv.F</td>
<td>Parallel ARPACK routine to compute product of mass times vector</td>
</tr>
<tr>
<td>paropk.F</td>
<td>Parallel ARPACK application of stiffness operator</td>
</tr>
<tr>
<td>paropm.F</td>
<td>Parallel ARPACK application of mass operator</td>
</tr>
<tr>
<td>pdsaitr.f</td>
<td>Parallel ARPACK reverse communication interface for ARPACK</td>
</tr>
<tr>
<td>pdsau2p2.f</td>
<td>Parallel ARPACK intermediate level interface called by pdsau2p2</td>
</tr>
<tr>
<td>pdsau2pd.f</td>
<td>Parallel ARPACK reverse communication interface for implicitly restarted Arnoldi Iteration</td>
</tr>
<tr>
<td>pdsau2pd.f</td>
<td>Parallel ARPACK computation of converged eigenvalues and vectors</td>
</tr>
<tr>
<td>psbusp.F</td>
<td>Parallel subspace eigenpair driver</td>
</tr>
<tr>
<td>psproja.f</td>
<td>Parallel subspace projection of stiffness matrix</td>
</tr>
<tr>
<td>psprojb.F</td>
<td>Parallel subspace projection of mass matrix</td>
</tr>
</tbody>
</table>
Table D.4: Modified and new user subprograms.

<table>
<thead>
<tr>
<th>Filename</th>
<th>Description of actions performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>uasble.F</td>
<td>Parallel assembly of element stiffness arrays into PETSc matrices</td>
</tr>
<tr>
<td>uasblem.F</td>
<td>Parallel assembly of element mass arrays into PETSc matrices</td>
</tr>
<tr>
<td>umacr4.f</td>
<td>Parallel ARPACK interface for PETSc instructions</td>
</tr>
<tr>
<td>umacr5.f</td>
<td>Serial ARPACK interface for PETSc instructions</td>
</tr>
<tr>
<td>umacr6.f</td>
<td>Average coordinate locations for mid-edge nodes on quadratic order elements</td>
</tr>
<tr>
<td>umacr7.f</td>
<td>Convert 10-node tetrahedral elements into 11-node tetrahedra</td>
</tr>
<tr>
<td>umacr8.f</td>
<td>Convert mesh of 10-node tetrahedral elements into mesh of 4-node tetrahedra</td>
</tr>
<tr>
<td>umacr9.f</td>
<td>Convert mesh of 10-node tetrahedral elements into mesh of 4-node tetrahedral elements</td>
</tr>
<tr>
<td>umacr0.f</td>
<td>Convert mesh of 10-node tetrahedral elements into mesh of 11-node tetrahedral elements</td>
</tr>
<tr>
<td>upc.F</td>
<td>Sets up user defined preconditioners (PC) for PETSc solutions</td>
</tr>
<tr>
<td>upremas.F</td>
<td>Parallel interface to initialize mass assembly into PETSc arrays</td>
</tr>
<tr>
<td>usolve.F</td>
<td>Parallel solver interface for PETSc linear solutions</td>
</tr>
</tbody>
</table>
Appendix E

Parallel Validation

The validation of the parallel portion of FEAP has been performed on a number of different basic problems to verify that the parallel extension of FEAP will solve such problems and that the parallel version performs properly in the sense that it scales with processor number in an acceptable manner. Furthermore, a series of comparison tests have been performed to verify that the parallel version of the program produces the same answers as the serial version. Because of the enormous variety of analyses that one can perform with FEAP, it is not possible to provide parallel tests for all possible combinations of program features. Nonetheless, below one will find some basic validation tests that highlight the performance of the parallel version of the code on a variety of problems.

All validation tests were performed on a cluster of AMD Opteron 250 processors, connected together via a Quadrics QsNet II interconnect. Code performance is often strongly related to the computational sub-systems employed. All tests reported utilized GCC v3.3.4, MPI v1.2.4, PETSc v2.3.2-p3, AMD ACML (BLAS/LAPACK) v3.5.0, ParMetis v3.1, Prometheus v1.8.5, and ARPACK ©2001. The batch scheduler assures that no other jobs are running on the same compute nodes during the runs. All runs have utilized the algebraic multigrid solver Prometheus in blocked form with coordinate information. Run times are as reported from PETSc summary statistics from a single run; Mflops are those associated with PETSc’s KSPsolve object; Number of solves is the total number of $Ax = b$ solves during the KSP iterations in the total problem, and Scaling % of ideal is computed as $(\text{Mflops}_{np}/np)/(\text{Mflops}_2/2) \times 100$.

43
E.1 Timing Tests

E.1.1 Linear Elastic Block

In this test a linear elastic unit block discretized into $70 \times 70 \times 70$ 8-node brick elements is clamped on one face and loaded on the opposite face with a uniform load in all coordinate directions. In blocked form there are 1,073,733 equations in this problem.

<table>
<thead>
<tr>
<th>Processors</th>
<th>Time (sec)</th>
<th>Mflops (KSP Solve)</th>
<th>Number Solves</th>
<th>Scaling % Ideal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>129.20</td>
<td>1241</td>
<td>13</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>71.69</td>
<td>2171</td>
<td>13</td>
<td>87</td>
</tr>
<tr>
<td>8</td>
<td>35.77</td>
<td>4646</td>
<td>14</td>
<td>94</td>
</tr>
<tr>
<td>16</td>
<td>21.30</td>
<td>8347</td>
<td>14</td>
<td>84</td>
</tr>
<tr>
<td>32</td>
<td>13.19</td>
<td>14561</td>
<td>14</td>
<td>73</td>
</tr>
</tbody>
</table>

E.1.2 Nonlinear Elastic Block

In this test a nonlinear neohookean unit block discretized into $50 \times 50 \times 50$ 8-node brick elements is clamped on one face and loaded on the opposite face with a uniform load in all coordinate directions. In blocked form there are 397,953 equations in this problem. To solve the problem, to default tolerances, takes 4 Newton iterations within which there are on average 12 KSP iterations.

<table>
<thead>
<tr>
<th>Processors</th>
<th>Time (sec)</th>
<th>Mflops (KSP Solve)</th>
<th>Number Solves</th>
<th>Scaling % Ideal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>166.7</td>
<td>1142</td>
<td>53</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>82.66</td>
<td>2356</td>
<td>54</td>
<td>103</td>
</tr>
<tr>
<td>8</td>
<td>43.48</td>
<td>4642</td>
<td>53</td>
<td>102</td>
</tr>
<tr>
<td>16</td>
<td>27.15</td>
<td>7846</td>
<td>56</td>
<td>86</td>
</tr>
<tr>
<td>32</td>
<td>15.58</td>
<td>13988</td>
<td>52</td>
<td>77</td>
</tr>
</tbody>
</table>

E.1.3 Plasticity

In this test one-quarter of a plate with a hole is modeled using 364500 8-node brick elements and pulled in tension beyond yield. The problem involves 10 uniform size load steps which drives the plate well into the plastic range; each load step takes between 3 and 10 Newton iterations. There are 1,183,728 equations. Due to the large number
of overall KSP iterations needed for this problem, it has only been solved using 8, 16, and 32 processors. Scaling is thus computed relative to the 8 processor run.

<table>
<thead>
<tr>
<th>Number Processors</th>
<th>Time (sec)</th>
<th>Mflops (KSP Solve)</th>
<th>Number Solves</th>
<th>Scaling % Ideal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>220.80</td>
<td>4434</td>
<td>2973</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>107.70</td>
<td>8425</td>
<td>2908</td>
<td>95</td>
</tr>
<tr>
<td>32</td>
<td>59.03</td>
<td>15645</td>
<td>2868</td>
<td>88</td>
</tr>
</tbody>
</table>

E.1.4 Box Beam: Shells

In this test a box beam is modeled using 40000 linear elastic 4-node shell elements (6-dof per node). The beam has a 1 to 1 aspect ratio with each face modeled by 100×100 elements. One end is fully clamped and the other is loaded with equal forces in the three coordinate directions. There are 242,400 equations; the block size is 6×6.

<table>
<thead>
<tr>
<th>Number Processors</th>
<th>Time (sec)</th>
<th>Mflops (KSP Solve)</th>
<th>Number Solves</th>
<th>Scaling % Ideal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>49.43</td>
<td>510</td>
<td>195</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>16.37</td>
<td>1619</td>
<td>190</td>
<td>159</td>
</tr>
<tr>
<td>8</td>
<td>12.46</td>
<td>1972</td>
<td>188</td>
<td>97</td>
</tr>
<tr>
<td>16</td>
<td>5.03</td>
<td>5246</td>
<td>181</td>
<td>129</td>
</tr>
<tr>
<td>32</td>
<td>3.28</td>
<td>8177</td>
<td>184</td>
<td>100</td>
</tr>
</tbody>
</table>

E.1.5 Linear Elastic Block: 10-node Tets

In this test the linear elastic unit block from the first test is re-discretized using 10-node tetrahedral elements. As in the 8-node brick case, there are 1,073,733 equations in this problem. In the table below, we also provide the ratio of times for the “same” problem when solved using 8-node brick elements. This indicates the difficulty in solving problems (iteratively) that emanate from quadratic approximations. Essentially, per dof, tets solve in the ideal case 1.5 times slower.
E.1.6 Transient

In this test a short (2 to 1 aspect ratio) neo-hookean beam is subjected to a step displacement in the axial direction. The modeling employs symmetry boundary conditions on three orthogonal planes. The beam is discretized into uniform size 8-node brick elements $10 \times 10 \times 20$ for a total of 7623 equations. The dynamic vibrations of the material are followed for 40 time steps using Newmark’s method. The steep drop off in performance should be noted. This is due to the small problems size. There is too little work for each processor to be effectively utilized here.

<table>
<thead>
<tr>
<th>Number Processors</th>
<th>Time (sec)</th>
<th>Mflops (KSP Solve)</th>
<th>Number Solves</th>
<th>% Ideal</th>
<th>Slow down vs. Brick</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>216.8</td>
<td>1299</td>
<td>30</td>
<td>-</td>
<td>1.7</td>
</tr>
<tr>
<td>4</td>
<td>110.4</td>
<td>2615</td>
<td>30</td>
<td>101</td>
<td>1.5</td>
</tr>
<tr>
<td>8</td>
<td>56.62</td>
<td>5059</td>
<td>29</td>
<td>97</td>
<td>1.6</td>
</tr>
<tr>
<td>16</td>
<td>31.44</td>
<td>9370</td>
<td>30</td>
<td>90</td>
<td>1.5</td>
</tr>
<tr>
<td>32</td>
<td>17.07</td>
<td>17659</td>
<td>28</td>
<td>85</td>
<td>1.3</td>
</tr>
</tbody>
</table>

E.1.7 Mock turbine

In this test we model a mock turbine fan blade with 12 fins. The system is loaded using an $R\omega^2$ body force term which is computed consistently. Overall there are 1,080,000 8-node brick elements in the mesh and 3,415,320 equations. It should be noted that problem, at roughly 3.5 million equations, provides enough work for the processors that even at 32 processors there is no degradation of performance. The scaling is perfect.

<table>
<thead>
<tr>
<th>Number Processors</th>
<th>Time (sec)</th>
<th>Mflops (KSP Solve)</th>
<th>Number Solves</th>
<th>% Ideal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>95.37</td>
<td>1079</td>
<td>1385</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>58.91</td>
<td>1687</td>
<td>1420</td>
<td>78</td>
</tr>
<tr>
<td>8</td>
<td>39.03</td>
<td>2645</td>
<td>1382</td>
<td>61</td>
</tr>
<tr>
<td>16</td>
<td>32.15</td>
<td>3138</td>
<td>1376</td>
<td>36</td>
</tr>
<tr>
<td>32</td>
<td>33.61</td>
<td>3123</td>
<td>1371</td>
<td>18</td>
</tr>
</tbody>
</table>
E.1.8 Mock turbine Small

In this test we model again a mock turbine fan blade with 12 fins. The system is loaded using an $R\omega^2$ body force term which is computed consistently. Overall, however, there are only 552960 8-node brick elements in the mesh and 1,771,488 equations.

<table>
<thead>
<tr>
<th>Number Processors</th>
<th>Time (sec)</th>
<th>Mflops (KSP Solve)</th>
<th>Number Solves</th>
<th>Scaling % Ideal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>854.3</td>
<td>806</td>
<td>116</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>362.4</td>
<td>1931</td>
<td>112</td>
<td>120</td>
</tr>
<tr>
<td>8</td>
<td>172.9</td>
<td>4085</td>
<td>110</td>
<td>127</td>
</tr>
<tr>
<td>16</td>
<td>88.99</td>
<td>8232</td>
<td>115</td>
<td>128</td>
</tr>
<tr>
<td>32</td>
<td>46.68</td>
<td>16159</td>
<td>112</td>
<td>125</td>
</tr>
</tbody>
</table>

E.1.9 Mock turbine Tets

In this test we model again a mock turbine fan blade with 12 fins. The system is loaded using an $R\omega^2$ body force term which is computed consistently. This time however we utilize 10-node tetrahedral elements with a model that has 1,771,488 equations. This computation can be directly compared to the small mock turbine benchmark. The slow down is given in the last column of the table below.

<table>
<thead>
<tr>
<th>Number Processors</th>
<th>Time (sec)</th>
<th>Mflops (KSP Solve)</th>
<th>Number Solves</th>
<th>Scaling % Ideal</th>
<th>Slow Down vs. Brick</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>347.40</td>
<td>1097</td>
<td>125</td>
<td>-</td>
<td>1.5</td>
</tr>
<tr>
<td>4</td>
<td>199.50</td>
<td>1878</td>
<td>132</td>
<td>86</td>
<td>1.5</td>
</tr>
<tr>
<td>8</td>
<td>91.63</td>
<td>4064</td>
<td>122</td>
<td>93</td>
<td>1.4</td>
</tr>
<tr>
<td>16</td>
<td>47.68</td>
<td>8024</td>
<td>126</td>
<td>91</td>
<td>1.5</td>
</tr>
<tr>
<td>32</td>
<td>26.32</td>
<td>15400</td>
<td>119</td>
<td>88</td>
<td>1.6</td>
</tr>
</tbody>
</table>
E.1.10 Eigenmodes of Mock Turbine

In this test we look at the computation of the first 5 eigen modes of the small (552960 element) mock turbine model. Again, the mesh is composed of 8-node brick elements and the model has 1,771,488 equations. A lumped mass is utilized and the algorithm tested is the ARPA symmetric option. Due to the large number of inner-outer iterations the timing runs are done only for 8, 16, and 32 processors. Scaling is thus computed relative to the 8 processor run.

<table>
<thead>
<tr>
<th>Number Processors</th>
<th>Time (sec)</th>
<th>Mflops (KSP Solve)</th>
<th>Number Solves</th>
<th>Scaling % Ideal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>916.9</td>
<td>3757</td>
<td>2744</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>507.1</td>
<td>7122</td>
<td>2876</td>
<td>95</td>
</tr>
<tr>
<td>32</td>
<td>248.3</td>
<td>14042</td>
<td>2723</td>
<td>93</td>
</tr>
</tbody>
</table>

E.2 Serial to Parallel Verification

Serial to parallel code verification is reported upon below. For all test run, the program is run in serial mode (with a direct solver) and in parallel mode on 4 processors (forcing inter- and intra-node communications). Then various computation output quantities are compared between the parallel and serial runs. In all cases, it is observed that the outputs match to the computed accuracy.

E.2.1 Linear elastic block

In this test a linear elastic unit block discretized into 5 × 5 × 5 8-node brick elements is clamped on one face and loaded on the opposite face with a uniform load in all coordinate directions. The displacements are compared at global nodes 100 and 200 and the maximum overall principal stress is also determined from both runs. All values are seen to be identical. For the parallel runs, the processor number containing the value is given in parenthesis and the reported node number is the local processor node number.

<table>
<thead>
<tr>
<th>Node</th>
<th>x-coor</th>
<th>y-coor</th>
<th>z-coor</th>
<th>x-disp</th>
<th>y-disp</th>
<th>z-disp</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>6.00E-01</td>
<td>8.00E-01</td>
<td>4.00E-01</td>
<td>-1.3778E-01</td>
<td>1.1198E+00</td>
<td>1.1241E+00</td>
</tr>
<tr>
<td>200</td>
<td>2.00E-01</td>
<td>6.00E-01</td>
<td>1.00E+00</td>
<td>-4.1519E-01</td>
<td>2.3568E-01</td>
<td>2.6592E-01</td>
</tr>
</tbody>
</table>
Serial Max Principal Stress

<table>
<thead>
<tr>
<th>Node</th>
<th>Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.0881E+02</td>
</tr>
</tbody>
</table>

Parallel Displacements

<table>
<thead>
<tr>
<th>(P)Node</th>
<th>x-coor</th>
<th>y-coor</th>
<th>z-coor</th>
<th>x-disp</th>
<th>y-disp</th>
<th>z-disp</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4)49</td>
<td>6.00E-01</td>
<td>8.00E-01</td>
<td>4.00E-01</td>
<td>-1.3778E-01</td>
<td>1.1198E+00</td>
<td>1.1241E+00</td>
</tr>
<tr>
<td>(2)38</td>
<td>2.00E-01</td>
<td>6.00E-01</td>
<td>1.00E+00</td>
<td>-4.1519E-01</td>
<td>2.3568E-01</td>
<td>2.6592E-01</td>
</tr>
</tbody>
</table>

Parallel Max Principal Stress

<table>
<thead>
<tr>
<th>(P)Node</th>
<th>Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3)1</td>
<td>4.0881E+02</td>
</tr>
</tbody>
</table>

Note: Processor 3’s local node 1 corresponds to global node 1.

E.2.2 Box Beam

In this test a linear elastic unit box-beam discretized into $4 \times 20 \times 20$ 4-node shell elements is clamped on one face and loaded on the opposite face with a uniform load in all coordinate directions. The displacements are compared at global nodes 500 and 1000 and the maximum overall principal bending moment is also determined from both runs. All values are seen to be identical. For the parallel runs, the processor number containing the value is given in parenthesis and the reported node number is the local processor node number.

Serial Displacements/Rotations

<table>
<thead>
<tr>
<th>Node</th>
<th>x-coor</th>
<th>y-coor</th>
<th>z-coor</th>
<th>x-disp</th>
<th>y-disp</th>
<th>z-disp</th>
<th>x-rot</th>
<th>y-rot</th>
<th>z-rot</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>8.00E-01</td>
<td>1.00E-01</td>
<td>1.00E+00</td>
<td>3.6632E-03</td>
<td>-3.2924E-03</td>
<td>2.3266E-03</td>
<td>4.4272E-02</td>
<td>-7.3033E-04</td>
<td>-2.1595E-02</td>
</tr>
<tr>
<td>1000</td>
<td>1.00E+00</td>
<td>3.00E-01</td>
<td>2.00E-01</td>
<td>2.2972E-02</td>
<td>1.5303E-03</td>
<td>1.6876E-02</td>
<td>4.8140E-02</td>
<td>1.5303E-03</td>
<td>-1.3278E-01</td>
</tr>
</tbody>
</table>

Serial Max Principal Bending Moment

<table>
<thead>
<tr>
<th>Node</th>
<th>Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.7091E+01</td>
</tr>
</tbody>
</table>
APPENDIX E. PARALLEL VALIDATION

Parallel Displacements/Rotations

<table>
<thead>
<tr>
<th>(P)Node</th>
<th>x-coor</th>
<th>y-coor</th>
<th>z-coor</th>
<th>x-disp</th>
<th>y-disp</th>
<th>z-disp</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)29</td>
<td>8.00E-01</td>
<td>1.00E-01</td>
<td>1.00E+00</td>
<td>3.6632E-03</td>
<td>-3.2924E-03</td>
<td>2.3266E-03</td>
</tr>
<tr>
<td>(2)280</td>
<td>1.00E+00</td>
<td>3.00E-01</td>
<td>2.00E-01</td>
<td>2.2972E-02</td>
<td>1.5303E-03</td>
<td>1.6876E-02</td>
</tr>
</tbody>
</table>

Parallel Max Principal Bending Moment

<table>
<thead>
<tr>
<th>(P)Node</th>
<th>Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4)1</td>
<td>1.7091E+01</td>
</tr>
</tbody>
</table>

Note: Processor 4’s local node 1 corresponds to global node 1.

E.2.3 Linear Elastic Block: Tets

In this test a linear elastic unit block discretized into 162 10-node tetrahedral elements is clamped on one face and loaded on the opposite face with a uniform load in all coordinate directions. The displacements are compared at global nodes 55 and 160 and the maximum overall principal stress is also determined from both runs. All values are seen to be identical. For the parallel runs, the processor number containing the value is given in parenthesis and the reported node number is the local processor node number.

Serial Displacements

<table>
<thead>
<tr>
<th>Node</th>
<th>x-coor</th>
<th>y-coor</th>
<th>z-coor</th>
<th>x-disp</th>
<th>y-disp</th>
<th>z-disp</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>8.33E-01</td>
<td>0.00E+00</td>
<td>1.67E-01</td>
<td>4.9509E-01</td>
<td>4.3175E-01</td>
<td>4.2867E-01</td>
</tr>
<tr>
<td>160</td>
<td>8.33E-01</td>
<td>1.67E-01</td>
<td>5.00E-01</td>
<td>2.1305E-01</td>
<td>4.2030E-01</td>
<td>4.1548E-01</td>
</tr>
</tbody>
</table>

Serial Max Principal Stress

<table>
<thead>
<tr>
<th>Node</th>
<th>Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>9.0048E+01</td>
</tr>
</tbody>
</table>

Parallel Displacements

<table>
<thead>
<tr>
<th>(P)Node</th>
<th>x-coor</th>
<th>y-coor</th>
<th>z-coor</th>
<th>x-disp</th>
<th>y-disp</th>
<th>z-disp</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3)23</td>
<td>8.33E-01</td>
<td>0.00E+00</td>
<td>1.67E-01</td>
<td>4.9509E-01</td>
<td>4.3175E-01</td>
<td>4.2867E-01</td>
</tr>
<tr>
<td>(1)17</td>
<td>8.33E-01</td>
<td>1.67E-01</td>
<td>5.00E-01</td>
<td>2.1305E-01</td>
<td>4.2030E-01</td>
<td>4.1548E-01</td>
</tr>
</tbody>
</table>
APPENDIX E. PARALLEL VALIDATION

<table>
<thead>
<tr>
<th>Parallel Max Principal Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P)Node</td>
</tr>
<tr>
<td>(4)6</td>
</tr>
</tbody>
</table>

Note: Processor 4’s local node 6 corresponds to global node 8.

E.2.4 Mock Turbine: Modal Analysis

In this test we examine a small mock turbine model with 30528 equations, where the discretization is made with 8-node brick elements. We compute using the serial code (subspace method) the first 5 eigenvalues using a lumped mass. With the parallel code, we compute the same eigenvalues using a parallel eigensolve (implicitly restarted Arnoldi). The computed frequencies and from the first 5 modes are compared and seen to be the same within the accuracy of the computation.

<table>
<thead>
<tr>
<th>Serial Eigenvalues (rad/sec)2</th>
<th>Parallel Eigenvalues (rad/sec)2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode 1</td>
<td>Mode 2</td>
</tr>
</tbody>
</table>

The comparison of eigenvectors is a bit harder for this problem because of repeated eigenvalues. The first eigenvalue is not repeated and it can easily be seen that the serial and parallel codes have produced the same eigenmode (up to an arbitrary scaling factor). Eigenvalues 2 and 3 are repeated and thus the vectors computed are, permissibly, drawn from a subspace and thus direct comparison is not evident. The same holds for eigenvalues 4 and 5; though, it can be observed that vector 4 from the serial computation does closely resemble vector 5 from the parallel computations – i.e. they appear to be drawn from a similar region of the subspace.

As a test of the claim of differing eigenmodes due to selection of different eigenvectors from a subspace, we also compute the first 5 modes of an asymmetric structure that does not possess repeated eigenvalues. The basic geometry is that of perturbed cube. The first 5 eigenvalues and modes are compared and show proper agreement to within the accuracy of the computations for both the eigenvalues and the eigenmodes.
Figure E.1: Comparison of Serial (left) to Parallel (right) mode shape 1 degree of freedom 1.

Figure E.2: Comparison of Serial (left) to Parallel (right) mode shape 2 degree of freedom 2.

Figure E.3: Comparison of Serial (left) to Parallel (right) mode shape 3 degree of freedom 3.
Figure E.4: Comparison of Serial (left) to Parallel (right) mode shape 4 degree of freedom 1.

Figure E.5: Comparison of Serial (left) to Parallel (right) mode shape 5 degree of freedom 2.
APPENDIX E. PARALLEL VALIDATION

Figure E.6: Comparison of Serial (left) to Parallel (right) mode shape 1 degree of freedom 1.

Figure E.7: Comparison of Serial (left) to Parallel (right) mode shape 2 degree of freedom 2.

<table>
<thead>
<tr>
<th>Serial Eigenvalues (rad/sec)2</th>
<th>Parallel Eigenvalues (rad/sec)2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode 1: 4.46503673E+01 4.52047021E+01 9.08496135E+01 2.32244552E+02 3.04152767E+02</td>
<td>Mode 1: 4.46503674E+01 4.52047021E+01 9.08496136E+01 2.32244552E+02 3.04152767E+02</td>
</tr>
</tbody>
</table>

E.2.5 Transient

This test involves a mixed element test with shells, bricks, and beams under a random dynamic load. The basic geometry consists of a cantilevered shell with a brick block above it which has an embedded beam protruding from it. The loading is randomly prescribed on the top of the structure and the time histories are followed and compared for the displacements at a particular point, the first stress component in a given element, and the 1st principal stress and von Mises stress at a particular node. The time history is followed for 20 time steps. The time integration is performed using Newmark’s method. Agreement is seen to be perfect to the accuracy of the computations.
Figure E.8: Comparison of Serial (left) to Parallel (right) mode shape 3 degree of freedom 3.

Figure E.9: Comparison of Serial (left) to Parallel (right) mode shape 4 degree of freedom 1.

Figure E.10: Comparison of Serial (left) to Parallel (right) mode shape 5 degree of freedom 2.
z-Displacement at (0.6,1,1)

<table>
<thead>
<tr>
<th>Time</th>
<th>Serial Value</th>
<th>Parallel Value</th>
<th>Time</th>
<th>Serial Value</th>
<th>Parallel Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000E+00</td>
<td>0.0000E+00</td>
<td>0.0000E+00</td>
<td>0.0000E+00</td>
<td>0.0000E+00</td>
<td>0.0000E+00</td>
</tr>
<tr>
<td>2.5000E-01</td>
<td>2.5181E-04</td>
<td>2.5181E-04</td>
<td>2.5000E-01</td>
<td>3.9640E-02</td>
<td>3.9640E-02</td>
</tr>
<tr>
<td>5.0000E-01</td>
<td>6.0174E-04</td>
<td>6.0174E-04</td>
<td>5.0000E-01</td>
<td>1.3681E-01</td>
<td>1.3681E-01</td>
</tr>
<tr>
<td>7.5000E-01</td>
<td>8.3328E-04</td>
<td>8.3328E-04</td>
<td>7.5000E-01</td>
<td>1.9837E-01</td>
<td>1.9837E-01</td>
</tr>
<tr>
<td>1.0000E+00</td>
<td>1.1250E-03</td>
<td>1.1250E-03</td>
<td>1.0000E+00</td>
<td>2.532E-01</td>
<td>2.532E-01</td>
</tr>
<tr>
<td>1.2500E+00</td>
<td>4.2010E-04</td>
<td>4.2010E-04</td>
<td>1.2500E+00</td>
<td>1.5061E-01</td>
<td>1.5061E-01</td>
</tr>
<tr>
<td>1.5000E+00</td>
<td>-7.1610E-04</td>
<td>-7.1610E-04</td>
<td>1.5000E+00</td>
<td>-1.5312E-01</td>
<td>-1.5312E-01</td>
</tr>
<tr>
<td>1.7500E+00</td>
<td>-1.3485E-03</td>
<td>-1.3485E-03</td>
<td>1.7500E+00</td>
<td>-3.7978E-01</td>
<td>-3.7978E-01</td>
</tr>
<tr>
<td>2.0000E+00</td>
<td>-2.2463E-03</td>
<td>-2.2463E-03</td>
<td>2.0000E+00</td>
<td>-4.2376E-01</td>
<td>-4.2376E-01</td>
</tr>
<tr>
<td>2.2500E+00</td>
<td>-1.8943E-03</td>
<td>-1.8943E-03</td>
<td>2.2500E+00</td>
<td>-4.4457E-01</td>
<td>-4.4457E-01</td>
</tr>
<tr>
<td>2.5000E+00</td>
<td>-9.1891E-04</td>
<td>-9.1891E-04</td>
<td>2.5000E+00</td>
<td>-2.9013E-01</td>
<td>-2.9013E-01</td>
</tr>
<tr>
<td>2.7500E+00</td>
<td>-6.8862E-04</td>
<td>-6.8862E-04</td>
<td>2.7500E+00</td>
<td>-1.4539E-02</td>
<td>-1.4539E-02</td>
</tr>
<tr>
<td>3.0000E+00</td>
<td>3.8305E-05</td>
<td>3.8306E-05</td>
<td>3.0000E+00</td>
<td>1.1134E-03</td>
<td>1.1139E-03</td>
</tr>
<tr>
<td>3.2500E+00</td>
<td>7.4499E-05</td>
<td>7.4499E-05</td>
<td>3.2500E+00</td>
<td>-1.1587E-01</td>
<td>-1.1587E-01</td>
</tr>
<tr>
<td>3.5000E+00</td>
<td>-1.4893E-04</td>
<td>-1.4893E-04</td>
<td>3.5000E+00</td>
<td>1.1732E-01</td>
<td>1.1732E-01</td>
</tr>
<tr>
<td>3.7500E+00</td>
<td>1.9767E-04</td>
<td>1.9767E-04</td>
<td>3.7500E+00</td>
<td>4.3679E-02</td>
<td>4.3678E-02</td>
</tr>
<tr>
<td>4.0000E+00</td>
<td>-1.8873E-04</td>
<td>-1.8873E-04</td>
<td>4.0000E+00</td>
<td>-2.1461E-01</td>
<td>-2.1461E-01</td>
</tr>
<tr>
<td>4.2500E+00</td>
<td>5.7747E-04</td>
<td>5.7747E-04</td>
<td>4.2500E+00</td>
<td>2.6870E-01</td>
<td>2.6871E-01</td>
</tr>
<tr>
<td>4.5000E+00</td>
<td>1.3268E-03</td>
<td>1.3268E-03</td>
<td>4.5000E+00</td>
<td>3.2132E-01</td>
<td>3.2132E-01</td>
</tr>
<tr>
<td>4.7500E+00</td>
<td>1.3859E-03</td>
<td>1.3859E-03</td>
<td>4.7500E+00</td>
<td>1.3378E-01</td>
<td>1.3378E-01</td>
</tr>
<tr>
<td>5.0000E+00</td>
<td>2.5241E-03</td>
<td>2.5241E-03</td>
<td>5.0000E+00</td>
<td>6.6854E-01</td>
<td>6.6854E-01</td>
</tr>
</tbody>
</table>
Stresses at Global Node 1

<table>
<thead>
<tr>
<th>Step</th>
<th>Serial Values</th>
<th>Parallel Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I_1 Principal</td>
<td>I_1 Principal</td>
</tr>
<tr>
<td>1</td>
<td>7.5561E-02</td>
<td>7.5561E-02</td>
</tr>
<tr>
<td>2</td>
<td>2.4364E-01</td>
<td>2.4364E-01</td>
</tr>
<tr>
<td>3</td>
<td>3.4447E-01</td>
<td>3.4447E-01</td>
</tr>
<tr>
<td>4</td>
<td>4.0833E-01</td>
<td>4.0833E-01</td>
</tr>
<tr>
<td>5</td>
<td>2.5260E-01</td>
<td>2.5260E-01</td>
</tr>
<tr>
<td>6</td>
<td>1.5934E-01</td>
<td>1.5934E-01</td>
</tr>
<tr>
<td>7</td>
<td>3.5077E-01</td>
<td>3.5077E-01</td>
</tr>
<tr>
<td>8</td>
<td>4.3971E-01</td>
<td>4.3971E-01</td>
</tr>
<tr>
<td>10</td>
<td>2.5587E-01</td>
<td>2.5587E-01</td>
</tr>
<tr>
<td>11</td>
<td>1.2681E-01</td>
<td>1.2681E-01</td>
</tr>
<tr>
<td>12</td>
<td>2.3099E-02</td>
<td>2.3099E-02</td>
</tr>
<tr>
<td>14</td>
<td>2.0000E-01</td>
<td>2.0000E-01</td>
</tr>
<tr>
<td>15</td>
<td>1.1798E-01</td>
<td>1.1798E-01</td>
</tr>
<tr>
<td>16</td>
<td>1.8668E-01</td>
<td>1.8668E-01</td>
</tr>
<tr>
<td>17</td>
<td>4.3432E-01</td>
<td>4.3432E-01</td>
</tr>
<tr>
<td>18</td>
<td>5.8732E-01</td>
<td>5.8732E-01</td>
</tr>
<tr>
<td>19</td>
<td>2.7197E-01</td>
<td>2.7197E-01</td>
</tr>
<tr>
<td>20</td>
<td>1.1706E+00</td>
<td>1.1706E+00</td>
</tr>
</tbody>
</table>

E.2.6 Nonlinear elastic block: Static analysis

In this test a unit neo-hookean block is clamped on one side and subjected to surface load on the opposite side. The displacements at two random nodes are compared as well as the max equivalent shear stress (von Mises) over the entire mesh. All values are seen to be the same between the serial and parallel computation.

<table>
<thead>
<tr>
<th>Node</th>
<th>x-coor</th>
<th>y-coor</th>
<th>z-coor</th>
<th>x-disp</th>
<th>y-disp</th>
<th>z-disp</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>1.67E-01</td>
<td>0.0000E+00</td>
<td>0.0000E+00</td>
<td>0.0000E+00</td>
</tr>
<tr>
<td>100</td>
<td>1.67E-01</td>
<td>0.00E+00</td>
<td>3.33E-01</td>
<td>5.6861E-04</td>
<td>1.0501E-04</td>
<td>1.5672E-04</td>
</tr>
</tbody>
</table>

Serial Maximum Equivalent Shear

<table>
<thead>
<tr>
<th>Serial Maximum Equivalent Shear</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.881</td>
</tr>
</tbody>
</table>
APPENDIX E. PARALLEL VALIDATION

Parallel Displacements

<table>
<thead>
<tr>
<th>(P)Node</th>
<th>x-coor</th>
<th>y-coor</th>
<th>z-coor</th>
<th>x-disp</th>
<th>y-disp</th>
<th>z-disp</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) 27</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>1.67E-01</td>
<td>5.8777E-17</td>
<td>4.9956E-18</td>
<td>-6.3059E-17</td>
</tr>
<tr>
<td>(2) 54</td>
<td>1.67E-01</td>
<td>0.00E+00</td>
<td>3.33E-01</td>
<td>5.6861E-04</td>
<td>1.0501E-04</td>
<td>1.5672E-04</td>
</tr>
</tbody>
</table>

Note: Processor 2’s nodes 27 and 54 correspond to global nodes 50 and 100.

<table>
<thead>
<tr>
<th>Parallel Maximum Equivalent Shear</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.881</td>
</tr>
</tbody>
</table>

E.2.7 Nonlinear elastic block: Dynamic analysis

In this test a non-linear neo-hookean block is subjected to a step displacement at one end while the other is end is clamped. The time history of the displacement at the center of the block is followed. The time integration is performed using Newmark’s method. Agreement is seen to be perfect to the accuracy of the computation.

<table>
<thead>
<tr>
<th>Time</th>
<th>x-Displacement Serial Run (Node 172)</th>
<th>x-Displacement Parallel Run (Node 25, Processor 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000E+00</td>
<td>0.0000E+00</td>
<td>0.0000E+00</td>
</tr>
<tr>
<td>1.0000E-02</td>
<td>-6.6173E-07</td>
<td>-6.6173E-07</td>
</tr>
<tr>
<td>2.0000E-02</td>
<td>1.1588E-05</td>
<td>1.1588E-05</td>
</tr>
<tr>
<td>3.0000E-02</td>
<td>-4.8502E-05</td>
<td>-4.8502E-05</td>
</tr>
<tr>
<td>4.0000E-02</td>
<td>-4.8177E-05</td>
<td>-4.8177E-05</td>
</tr>
<tr>
<td>5.0000E-02</td>
<td>2.6189E-04</td>
<td>2.6189E-04</td>
</tr>
<tr>
<td>6.0000E-02</td>
<td>7.8251E-04</td>
<td>7.8251E-04</td>
</tr>
<tr>
<td>7.0000E-02</td>
<td>1.0785E-03</td>
<td>1.0785E-03</td>
</tr>
<tr>
<td>8.0000E-02</td>
<td>9.7015E-04</td>
<td>9.7015E-04</td>
</tr>
<tr>
<td>9.0000E-02</td>
<td>7.7567E-04</td>
<td>7.7567E-04</td>
</tr>
<tr>
<td>1.0000E-01</td>
<td>8.2252E-04</td>
<td>8.2252E-04</td>
</tr>
</tbody>
</table>

Note: Local node 25 of processor 3 corresponds to global node 172.

E.2.8 Plastic plate

In this test a small version of the quarter plastic plate from the timing runs is used with 4500 8-node brick elements. The problem involves 10 uniform size load steps which
Figure E.11: von Mises stresses at the end of the loading. (left) serial, (right) parallel drives the plate well into the plastic range. The displacement history is followed for a point on the loaded edge of the plate. As seen in the tables the parallel and serial runs match. Also shown are the contours of the von Mises stresses at the end of the run with the plastic zone emanating from the plate hole; these also match perfectly within the accuracy of the computation.

<table>
<thead>
<tr>
<th>y-Displacement</th>
<th>Load Step</th>
<th>Serial Run (Node 5700)</th>
<th>Parallel Run (Node 1376, Part. 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.0000E+00</td>
<td>0.0000E+00</td>
</tr>
<tr>
<td></td>
<td>1.0000E-01</td>
<td>1.5260E-02</td>
<td>1.5260E-02</td>
</tr>
<tr>
<td></td>
<td>2.0000E-01</td>
<td>3.0520E-02</td>
<td>3.0520E-02</td>
</tr>
<tr>
<td></td>
<td>3.0000E-01</td>
<td>4.5780E-02</td>
<td>4.5780E-02</td>
</tr>
<tr>
<td></td>
<td>4.0000E-01</td>
<td>6.1039E-02</td>
<td>6.1039E-02</td>
</tr>
<tr>
<td></td>
<td>5.0000E-01</td>
<td>7.6308E-02</td>
<td>7.6308E-02</td>
</tr>
<tr>
<td></td>
<td>6.0000E-01</td>
<td>9.1639E-02</td>
<td>9.1639E-02</td>
</tr>
<tr>
<td></td>
<td>7.0000E-01</td>
<td>1.0707E-01</td>
<td>1.0707E-01</td>
</tr>
<tr>
<td></td>
<td>8.0000E-01</td>
<td>1.2264E-01</td>
<td>1.2264E-01</td>
</tr>
<tr>
<td></td>
<td>9.0000E-01</td>
<td>1.3848E-01</td>
<td>1.3848E-01</td>
</tr>
<tr>
<td></td>
<td>1.0000E+00</td>
<td>1.5519E-01</td>
<td>1.5519E-01</td>
</tr>
</tbody>
</table>

Note: Local node 1376 on processor 4 corresponds to global node 5700.

E.2.9 Transient plastic

This test involves a mixed element test with shells, bricks, and beams under a random dynamic load with load sufficient to cause extensive plastic yielding in the system. The basic geometry consists of a cantilevered shell with a brick block above it which has a an embedded beam protruding from it. The loading is randomly prescribed
Figure E.12: Z-displacement for the node located at (0.6, 1.0, 1.0).

on the top of the structure and the time histories are followed and compared for the displacements at a particular point, the first stress component in a given element, and the 1st principal stress and von Mises stress at a particular node. The time history is followed for 150 time steps. The time integration is performed using Newmark’s method. As a benchmark the elastic response (from the serial computation) is also shown in each figure. The agreement between the parallel and serial runs is seen to be perfect.
Figure E.13: 11-component of the stress in the element nearest (1.6, 0.2, 0.8).

Figure E.14: 1st principal stress at the node located at (1.6, 0.2, 0.8).
Figure E.15: von Mises stress at the node located at (1.6, 0.2, 0.8).
Index

Command language solution, 21

Eigensolution
 Arnoldi/Lanczos method, 16
 Subspace method, 15
Equation structure, 9, 10

Graph partitioning, 2
 METIS, 2
 ParMETIS, 3

GRAPh partitions
 During solution, 25

Linear equation solution
 Iterative, 26, 32

Mesh
 Input file form, 6
 Structure, 4

Mesh command
 BLOcked, 6, 8
 DOMAin, 6, 10
 EQUAtion, 6, 10
 GETData, 6, 8
 LOCAL, 6, 8
 MATRix, 6, 9
 SENDdata, 6, 8

Nonlinear equation solution
 Tolerance, 32

Output domain meshes
 During solution, 29
 Output with global node numbers, 14

Parallel solution control, 30

Plots

Graphic outputs, 17

Solution command
 DISPlacements, 22
 GLISSt, 14, 23
 GNODE, 14
 GPLOt, 17, 24
 GRAPh, 2, 4
 GRAPh partitions, 25
 ITER, 13
 ITERative, 26
 NDATa, 18, 28
 OUTDomain, 29
 OUTDomains, 2, 4
 PARPack, 16
 PETSc, 12, 30
 PSUBspace, 15
 STREss, 31
 TOL, 13
 TOlerance, 32

Solution process, 11
 PETSc activation, 11, 12
 PETSc array output, 12
 Tolerances, 13