next up previous
Next: Resultados Up: Análisis con FEAP Previous: Acerca de FEAP

Fichero de datos

FEAP * * Ejemplo de aplicación de FEAP a un puente * *
,,,3,6,2

!Unidades en kN y m.
PARAmeter
R=300
a1=40/300/2/3.141593*360
a2=60/300/2/3.141593*360
a3=40/300/2/3.141593*360
A=8
Ix=10
Iy=2
Jz=10
E=30000e3
pp=200
sc=40
n1=40
n2=60
n3=40
nu=0.3

BLOCk,,,,,1
POLAr,n1
1,R,0,0
2,R,a1,0

BLOCk
POLAr,n2
1,R,a1
2,R,a1+a2

BLOCk
POLAr,n3
1,R,a1+a2
2,R,a1+a2+a3

BOUNdary
1,,1,1,1,,1
n1+1,,1,1,1
n1+n2+2,,1,1,1
n1+n2+n3+3,,1,1,1,1,1,1

FORCe
1,1,0,0,-pp*R*(a1/360*2*3.141593)/n1
n1+1,,0,0,-pp*R*(a1/360*2*3.141593)/n1
n1+3,1,0,0,-(pp+sc)*R*(a2/360*2*3.141593)/n2
n1+n2+2,,0,0,-(pp+sc)*R*(a2/360*2*3.141593)/n2
n1+n2+4,1,0,0,-pp*R*(a3/360*2*3.141593)/n3
n1+n2+n3+3,,0,0,-pp*R*(a3/360*2*3.141593)/n3

MATErial,1
FRAMe
ELAStic,ISOTropic,E,nu
CROSs,SECTion,A,Ix,Iy,,Jz
REFErence,VECTor,0,0,1
!Z = eje viga; Y = Z x V; X = Y x Z  

END

TIE

BATCh
TANGent,,1
DISPlacement,,n1+n2/2+2
STREss,,n1+n2/2
REACtion,,1
REACtion,,n1+1
REACtion,,n1+n2+2
REACtion,,n1+n2+n3+3
END

INTEractive

STOP


Francisco José Calvo, Juan Antonio Navarro y Javier Rodríguez