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SUMMARY

In this work we analyse the use of enhanced strain fields for the purpose of error estimation in finite
element solid mechanics applications. The proposed approach evaluates the quality of the solution
for standard Galerkin displacement elements, taking into account the enrichment of the solution with
enhanced assumed strain (EAS) mixed elements. The contribution of the enhanced strain modes is
measured with an energy norm.

The method proposed has two interesting advantages. Firstly, it results in a local formulation which
is evaluated element by element. Secondly, it is easily extended to nonlinear problems. In this work,
the formulation is developed for linear elasticity, for finite strain elasticity, and von Mises small strain
plasticity.

Finally, some representative numerical simulations are presented which show in practice the
performance of the method.
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1. INTRODUCTION

Finite element methods have become one of the main computational tools for applied mechanics
and structural engineering. Many successful applications exist nowadays for both linear and
nonlinear problems. This expansion in the field of applications must be accompanied with
parallel efforts to assess the quality of the computed results.

The interest of “a posteriori” error estimators lies in their direct applicability to adaptive
refinement techniques. The development of these estimators may be traced back to the works of
Babuška[3] and Zienkiewicz–Zhu [19]. Since then, several error estimators have been proposed
for linear analyses, whose efficiency has been proved for a wide variety of problems.

The development of nonlinear finite element methods is more recent, and a number of
research lines remain open. Error estimation applied to this kind of problems has some inherent
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limitations due to the nature of nonlinear behaviour. As examples, one might cite non-unique
solutions associated with load path dependency, or bifurcations associated with material or
geometric instabilities such as localisation of deformation or buckling.

In spite of these limitations, some remarkable achievements have been performed in nonlinear
finite element error estimation. Between these are the developments of Ortiz and Quigley [10]
in localisation, Johnson [8] in the context of the elastic-plastic model of Hencky, the error
estimator of Barthold et al [4] applied to the elastic-plastic models of Hencky and Prandtl-
Reuss, etc. Finally it’s necessary to remark the recent works of Radovitzky and Ortiz [12] in
error estimation for highly non linear problems, including finite deformations in hyperelasticity,
viscoplasticity, dynamics, etc.

In what remains of this paper, the applicability of enhanced strain fields for the purpose of
error estimation is explored, both for linear and nonlinear problems. The approach is based on
the improved approximation qualities of enhanced assumed strain (EAS) mixed formulations
such as have been proposed in [14, 16]. The error estimator may be formulated in the
framework of energy norms, aiming to provide error bounds for the standard displacement finite
element solutions. The formulation is developed initially for linear elasticity, and subsequently
extended to finite elasticity and plasticity. Representative numerical simulations of each of
these problems are presented. Although we have not found rigorous theoretical proof of the
validity of our approach as an error estimator, in practice the performance of the method in
the cases we have analysed is encouraging.

2. ENHANCED ASSUMED STRAIN (EAS) FINITE ELEMENT FORMULATION

The EAS finite element formulation [2, 14, 15, 16] is based on the discrete variational equations
obtained from the Hu-Washizu functional [18]. The existence of a function of strain energy
density is assumed, which may be expressed as a function of the linear strain tensor ε ≡ εij

for small strain problems, or the deformation gradient F ≡ FiJ for finite strain problems.
The key ingredient of EAS formulations is to enrich the solution as compared to a purely

displacement based formulation, using additional assumed strain modes. For small strains [16]
the starting point is an additive decomposition of the strain field into a compatible part and
an enhanced part:

ε = ∇su︸︷︷︸
comp.

+ ε̃︸︷︷︸
enh.

; εij =
1
2
(ui,j + uj,i) + ε̃ij , (1)

where ∇su (symmetric component of the displacement gradient) is the compatible part of strain
field, and ε̃ is the enhanced (or incompatible) part. This decomposition allows an enhancement
of the numerical solution associated with the incompatible part in discrete models (for the exact
continuum mechanics solution the field ε̃ would be null). There are no requirements in principle
of inter-element continuity for the enhanced field ε̃, resulting in additional strain modes which
are internal to each element.

For finite deformation [14, 9] EAS may be formulated in terms of displacements and
deformation gradients, parametrised via the following additive decomposition:

F = ∇Xϕ︸ ︷︷ ︸
comp.

+ F̃︸︷︷︸
enh.

; FiJ = xi,J + F̃iJ , (2)
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where ϕ : X 7→ x is the deformation mapping, and ∇X is the gradient with respect to the
original configuration.

Full details of EAS formulations may be gathered from the above cited references, and in
[6] regarding their implementation for this work.

3. ERROR ESTIMATION BASED ON ENERGY NORMS

In order to define the framework of our approach, a brief summary of concepts and notation
for error estimation based on energy norms is presented below.

3.1. Variational structure of the boundary value problem

We shall consider a boundary value solid mechanics problem, for which the strong formulation
is expressed in terms of the unknown displacement field u via a differential operator A(u) in
Ω ∪ ∂Ω:

A(u) = 0 ≡





div σ + b = 0 in Ω;
u = g in ∂gΩ;
σ · n = t in ∂tΩ.

(3)

being σ the Cauchy stress tensor, b the body load per unit volume, g the imposed displacement
and t the imposed tractions. We shall further assume a variational structure of the problem,
which makes (3) equivalent to minimizing the functional Π(u) =

∫
Ω

W dΩ−∫
Ω

b·udΩ−∫
∂tΩ

t·
udΓ, where W = W (ε(u), x) is the function of strain energy density, b the volume forces and
t the applied surface tractions.

The Dirichlet form a(u)[δu, δu] associated with the strain energy is defined as the second
variation of the functional. Defining the tangent elastic moduli D = ∂2W/∂ε∂ε, it is expressed
as

a(u)[δu, δu] =
∫

Ω

∇xδu · (D ·∇xδu
)
dΩ =

∫

Ω

Dijklδui,jδuk,ldΩ (4)

where sums on repeated indices are understood, and δu ∈ V are admissible variations within
the space of functions with finite energy norm, satisfying homogeneous kinematic boundary
conditions in ∂gΩ.

For the particular case of linear elasticity D does not depend on u, and application of (4)
to the displacement field u itself yields twice the strain energy, a[u, u] =

∫
Ω

ε · (D · ε) dΩ =
2

∫
Ω

W dΩ. In a general case, the energy norm for a given field v is defined as

‖v‖E
def= a(u)[v, v]

1
2 . (5)

The form a(u)[δu, δu] is regular if 1) the coefficients D ≡ Dijkl are bounded in

Ω, and 2) there exists C ∈ R+ such that a(u)[δu, δu]
1
2 > C‖δu‖1, where ‖δu‖1 def=[∑1

α=0

∫
Ω
(Dαδu)2 dΩ

] 1
2

(1st. Sobolev norm). Under these circumstances the functional Π(u)
is convex and has a unique relative minimum. Hence, the solution u of the boundary value
problem verifies:

Π(u) = inf
v∈V

Π(v). (6)
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The variational equation associated with the functional Π(u) is:

G(u)[δu] = 0 ∀δu ∈ V. (7)

where G(u)[δu] is the weak form derived from the boundary value problem (3). Following we
shall restrict ourselves to the case of linear elasticity,

G(u)[δu] = −
∫

Ω

σ ·∇x(δu) dΩ +
∫

Ω

b · δu dΩ +
∫

∂tΩ

t · δu dΓ (8)

Let us now consider the following two expressions: firstly, the restriction of (8) to variations
δuh ∈ Vh,

G(u)[δuh] = 0 ∀δuh ∈ Vh; (9)

and second, the particularisation of (8) to uh ∈ Vh,

G(uh)[δuh] = 0 ∀δuh ∈ Vh. (10)

Subtracting these two equations, taking into account the linearity of G(u)[δu], the following
result is obtained, expressed in terms of the Dirichlet form:

a(u)[u− uh, δuh] = 0 ∀δuh ∈ Vh (11)

Equation (11) indicates that the finite element solution minimises the value of the energy
norm ‖u − uh‖E . This property is referred to as the optimal approximation property of the
finite element method:

‖u− uh‖E = inf
vh∈Vh

‖u− vh‖E . (12)

3.2. Local error estimation

In general, the finite element solution is obtained in the discretised domain Ωh, which is
constructed via the discretisation of the body Ω ⊂ R3 in nel elements Ωe, e = 1, . . . nel.

Let the finite energy function ue be the exact displacement field in Ωe. The finite dimension
interpolant polynomial of the exact solution ue is:

ue
h(x) def=

nnen∑
a=1

uaNa(x) ∈ Pk(Ωe) (13)

being nnen the number of nodes of element e, and Pk(Ωe) the set of polynomials over Ωe with
degree lower or equal than k.

The local error function in element Ωe is defined in each point as the difference between
the exact displacement field and the approximate displacement field computed via the finite
element method:

Ee(x) = ue(x)− ue
h(x) (14)

The objective of the local error estimator is to obtain an upper bound of the local error
function (14), which may be expressed as:

‖ue − ue
h‖E ≤ C(he)α|ue| (15)

where C > 0 is constant, he the diameter of Ωe, |ue| a seminorm of ue and α the rate of
convergence. The inequality (15) is verified if the optimal approximation property (12) and the
regularity conditions for a(u)[·, ·] hold [5].
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3.3. Global error estimation

Since ‖uh
e‖E is bounded, if the shape functions in (13) are conforming, then the global

interpolant function defined as uh =
∑nel

e=1 ue
h is also a finite energy function. In such situation,

the upper bound of the global error function expressed in (15) can be obtained as the sum of
the element contributions. Performing this sum, if the regularity conditions hold, the inequality
(15) results in:

‖u− uh‖E ≤ C

nel∑
e=1

(he)k+1

ρe
|u|k+1 (16)

where |u|k+1 is the (k + 1)st. Sobolev seminorm, |u|k+1 =
[∫

Ω
(Dk+1u)2 dΩ

] 1
2 , and ρe is the

diameter of the largest sphere in Ωe.

4. ERROR ESTIMATOR PROPOSED

From a practical point of view, equation (16) is not convenient because the error is expressed
in terms of the a priori unknown exact solution ue. Further it is not possible to substitute this
field by its approximate solution ue

h, as it is a polynomial of degree k and the seminorm used
is of order k + 1 (Dk+1ue

h = 0).
Our objective is to build an error estimator for the approximate solution, calculated with

(compatible) displacement elements. For this the finite element solution uenh obtained with
the EAS elements described in section 2 will be used. The starting point is the triangular
inequality for the energy norm as follows:

‖u− uh‖E ≤ ‖u− uenh‖E + ‖uenh − uh‖E (17)

Assuming both finite element solutions are convergent, we can express

‖u− uenh‖E = O(hm) (18)
‖uenh − uh‖E = O(hp) (19)

A key assumption we shall now make is that, at least in the asymptotic regime (h → 0), the
rates of convergence in the above expressions are as follows:

m > p (20)

In these conditions, as the mesh is refined, the first term on the right hand side of equation
(17) becomes negligible as compared to the second one. Therefore it is possible to establish
that:

‖u− uh‖E ≤ C‖uenh − uh‖E , C ∈ R+ (21)

Hypotheses (18, 19, 20) may be interpreted plainly in the following terms: it is assumed
that both the enhanced solution uenh and the displacement solution uh converge to the exact
solution, in such manner that

1. Their difference, measured by the energy norm ‖uenh − uh‖E , decreases with mesh
refinement;
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2. The difference between the solution with EAS and the exact solution decreases faster
(with increasing number the elements) than the difference between the solution with
EAS and the standard displacement formulation.

The second statement is true if compatible finite element formulation exhibits locking, e.g.
incompressible elasticity, dominated bending situations, etc. Otherwise (compressible elasticity
without significant bending, mild locking, etc.) it is not possible to judge in advance if (20) is
verified. We have not found a rigorous proof of the general validity of this hypothesis. However,
in the practical applications we have performed some of which are included further down in
this paper, it has been fount to be valid.

As a consequence, the local error estimator proposed is the energy norm of the difference
between the enhanced and the displacement solutions:

(Ee)2 = ‖ue
enh − ue

h‖E (22)

As discussed in subsection 3.3, the global error may then be obtained as the sum of the local
errors:

E2 =
nel∑
e=1

(Ee)2 (23)

In summary, in order to compute the local error estimator (22), the discretisation error
associated with the standard elements is quantified via the energy norm associated with the
incompatible modes computed with enhanced elements.

Each component in the sum (23) is local. Therefore the proposed estimator has the advantage
that it is computed element by element, without recourse to global smoothing techniques nor
sub-domain solutions apart from the computation of the enhanced strain field.

5. ERROR ESTIMATION IN FINITE ELASTICITY PROBLEMS

The error estimator proposed above may be generalised for finite elasticity problems with
hyperelastic models. Here the unknown field shall be the deformation mapping ϕ : Ω 3 X 7→
x ∈ Ωt, where Ω is the reference configuration and Ωt is the deformed configuration at time
t. The basis of this formulation is similar to that described in section 3, replacing here the
displacement field u by the deformation mapping ϕ, and the linear strain tensor ε by the
deformation gradient F = ∇Xϕ.

With respect to the approximation methodology the following result is obtained in a similar
way to equation (11):

G(ϕ)[δϕh]−G(ϕh)[δϕh] = 0 ∀δϕh ∈ Vh (24)

In this case it’s not possible to group the two terms in (24), leading to a expression similar to
(11), because in finite elasticity the weak form G(ϕ)[δϕ] is nonlinear in ϕ. However, considering
the asymptotic regime (h → 0), the finite element solution ϕh will approach the exact solution;
as (ϕ−ϕh) → 0, equation (24) may be linearised, resulting in:

G(ϕ)[δϕh]−G(ϕh)[δϕh] ≈ a(ϕ)[ϕ−ϕh, δϕh] = 0 ∀δϕh ∈ Vh, h → 0 (25)
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6 F. GABALDÓN AND J.M. GOICOLEA

This condition establishes the optimal approximation property of the finite element method for
finite elasticity, in the asymptotic regime [12]:

‖ϕ−ϕh‖E = inf
vh∈Vh

‖ϕ− vh‖E h → 0 (26)

For finite deformations, the equivalent assumptions to (18, 19) are expressed now in terms
of the deformation mapping ϕ:

‖ϕ−ϕenh‖E = O(hm) (27)
‖ϕenh −ϕh‖E = O(hp) (28)

m > p (29)

Then, if (27, 28, 29) are verified, the expression of the local error estimator proposed in (22)
results in:

(Ee)2 = ‖ϕe
enh −ϕe

h‖E (30)

For numerical implementation, the value of (30) is computed in the reference configuration.
The expression of the energy norm, for a given field value η, is [5]:

(‖η‖E)2 = a(ϕ)[η, η] =
∫

Ω

∇xη · (D ·∇xη) dΩ (31)

where D is the tangent tensor of constitutive moduli:

D =
∂2W (X, F )

∂F ∂F
(32)

Straightforward calculations in (30) taking into account (2) provide the closed form of the
error estimator [6]:

(Ee)2 =
1
2

∫

Ωe

F̃ · (D · F̃ ) dΩ (33)

being F̃ the enhanced part of the deformation gradient (2). Note that expression (33) is
configuration dependent, as moduli D change. Computing the global error via (33) extended
over the complete domain Ω, it can be expressed as the sum of the local errors:

E2 =
nel∑
e=1

(Ee)2 (34)

6. ERROR ESTIMATION IN VON MISES PLASTICITY

The methodology of error estimation discussed in section 4 and generalised to finite elasticity
problems in section 5, is now further extended to elastic-plastic small strain problems, with
Von Mises yield criterion. The methodology described above assumes a variational structure
of the boundary value problem. In plasticity, this variational structure may be obtained at an
incremental level via the variational integration of the plasticity equations [11]. This variational
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integration postulates the existence of an incremental energy function per unit volume Wt+∆t,
for solving step t + ∆t from the results in step t, such that

σt+∆t =
∂Wt+∆t

∂εe
t+∆t

(35)

where εe
t+∆t are the elastic strains at time t + ∆t.

A general formulation for finite deformation plasticity in dynamic regime has been developed
by Radovitzky and Ortiz [12]. We follow this same approach, particularising it for small strain
J2 plasticity with isotropic hardening. The functional dependence of Wt+∆t is on elastic strain
and effective plastic strain ξ =

∫ t

0
2/3 (ε̇p ·ε̇p)1/2 dt. The expression of the incremental potential

function is [11]:

Wt+∆t(εe
t+∆t, ξt+∆t, ε

e
t , ξt) = min

ξt+∆t

(
Ψt+∆t(εe

t+∆t, ξt+∆t)−Ψt(εe
t , ξt)

)
(36)

where Ψ(εe, ξ) is the free energy function. The requirement for a minimum in the right-hand
side of (36) is equivalent to the condition:

∂Ψt+∆t(εe
t+∆t, ξt+∆t)

∂ξt+∆t
= 0 (37)

Assuming that the elastic response is independent of the phenomena associated with
unrecoverable distortions of the crystalline lattice, the free energy function may be expressed
via the additive decomposition in an elastic part and a plastic part. Besides, if the additive
decomposition of the infinitesimal strain tensor is assumed:

Ψ(εe, ξ) = Ψe(εe) + Ψp(ξ); ε = εe + εp, (38)

the incremental potential Wt+∆t in (36) can be written as:

Wt+∆t = min
ξt+∆t

(
Ψe

t+∆t(εt+∆t − εp
t+∆t) + Ψp

t+∆t(ξt+∆t)−Ψe
t (εt − εp

t )−Ψp
t (ξt)

)
(39)

The optimisation condition (37) applied to (39), leads to the following expression [6]:

(
J2,t+∆t

)2 =
2
3

∂Ψp

∂ξt+∆t
(40)

where J2 is the second invariant of the deviatoric part of the Cauchy stress tensor. In this
situation the boundary value problem is described via an incremental differential operator,
At+∆t(u) = 0. The corresponding Dirichlet form is

a(ut+∆t)[δu, δu] =
∫

Ω

∇s(δu) ·
(

∂2Wt+∆t

∂εt+∆t∂εt+∆t
·∇s(δu)

)
dΩ (41)

If (41) verifies the regularity conditions, the error estimation methodology described in
previous sections is applicable. Then, the local error estimator for this kind of problems is:

(Ee
∆t)

2 = ‖ue
enht+∆t

− ue
ht+∆t

‖E (42)
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8 F. GABALDÓN AND J.M. GOICOLEA

The error bound proposed in (42) is an incremental bound of absolute error in a given
time-step ∆t. In order to evaluate the discretisation error along the complete load path, it is
necessary to determine the integral of Ee

∆t over time:

(Ee
t+∆t)

2 =
∫ t+∆t

0

(Ee
∆t)

2dt (43)

The above expression indicates that accumulation of the error is performed by summing the
squares. This causes one of the limitations of this error estimator as a global measure for
the complete load path: it is computed as an increasing monotonic function, as the integrand
is always positive. It will not reflect correctly situations in which errors may tend to reduce
locally along a complex load path or bifurcations.

Using the incremental function Wt+∆t, the error estimator is interpreted as the contribution
of the incompatible modes of the free energy function:

(Ee
∆t)

2 =
∫

Ωe

Wt+∆t

(
εe

t+∆t − εe
t+∆t(u), ξt+∆t − ξt+∆t(u), εe

t − εe
t (u), ξt − ξt(u)

)
dΩ (44)

The energy density in (44) can be decomposed additively with the contributions of the
elastic and plastic part of the free energy, resulting in:

(Ee
∆t)

2 =
∫

Ωe

W e
t+∆t

(
εe

t+∆t − εe
t+∆t(u), εe

t − εe
t (u)

)
dΩ+

∫

Ωe

W p
t+∆t (ξt+∆t − ξt+∆t(u), ξt − ξt(u)) dΩ (45)

The global discretisation error is obtained extending the integral in (44) to the complete
domain Ω. Then, the global error is computed via the summation of the local errors:

E2
∆t =

nel∑

i=1

(Ei
∆t)

2 (46)

7. NUMERICAL SIMULATIONS

7.1. 3-D linear elasticity. Scordelis-Lo roof

The classical Scordelis-Lo test for shell elements [13], is solved here with 3D solid elements in
order to show the behaviour of the error estimator using an isotropic linear elasticity model. On
an 80◦ cylindrical sector roof a volumetric load is acting in Z direction. The roof is supported on
two rigid diaphragms. Figure 1 shows the problem definition taking into account the symmetry
conditions. The numerical values of the elastic constants are [13]: E = 4.32 · 108, ν = 0, and
the dimensions of the roof are L = 50, R = 25, t = 0.25 and b = 360.

The results obtained with enhanced assumed strain elements are very adequate for error
estimation because they approach closely those obtained with shell elements, as shown in
table I for several meshes with only one element across the thickness. The results for shell
elements referenced in this table have been obtained with the four node general purpose thick
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Figure 1. Scordelis-Lo roof. Definition of the problem.

Table I. Results obtained with 3D enhanced elements and thick shell elements for Scordelis-Lo test

No of elements vB (solid elements) vB (shell elements)

4× 4× 1 0.1656 0.3132
8× 8× 1 0.2896 0.3031
16× 16× 1 0.3031 0.3016
32× 32× 1 0.3038 0.3016
64× 64× 1 0.3042 0.3018

shell element S4 from a commercial program element library [1]. The vertical displacement of
point B computed with 16 × 16 × 1 enhanced solid elements is vB = 0.3031, very similar to
the result vref = 0.3024 reported in the literature [13].

For error estimation the exact solution adopted here is obtained with a 24961 D.O.F.
reference mesh, solved with enhanced assumed strain elements. The error estimation is analysed
refining over the surface of the roof with only one element along the thickness, as well as refining
through the thickness. The meshes considered for the first case are those referenced in table I.
The meshes used for refinement along the thickness are 16× 16× 1, 16× 16× 2, 16× 16× 3,
16× 16× 4, 16× 16× 5 and 16× 16× 10.

Figure 2 shows the energy norm ‖uref‖E computed with the reference mesh, the energy norm
computed with enhanced elements ‖uenh‖E , and the energy norm computed with standard
displacement elements ‖uh‖E versus the number of degrees of freedom, for refinement over
the surface. The refinement across the thickness does not show a significant influence on the
energy norm [7]. Figures 3 and 4 show the evolution of the global error estimated in terms of
the number of degrees of freedom. The theoretical error is evaluated as the difference between
the reference energy norm and the energy norm computed with standard elements.

In order to check the assesment of the key hypothesis (20) the rates of convergence m and p
employed in the said hypothesis have been computed. The exponent m in ‖u− uh‖E = Chm

is approximated via the difference of the reference mesh norm ‖uref‖E minus ‖uh‖E and the
exponent p in ‖uenh − uh‖E = Chp is obtained directly from the finite element computation
of the error estimator. Each value of m and p is obtained from the results of two meshes
with parameters h1 and h2, and the assumption that C and the rate of convergence (m or p)
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Figure 2. Variation of energy norm with no. of D.O.F. for refinement over the surface
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Figure 3. Evolution of global error with respect to no. of D.O.F. for refinement over the surface

are constant for the two meshes (in a similar way to Richardson’s extrapolation). In table II
the values obtained for m and p in the Scordelis-Lo test are shown. For all the meshes the
hypothesis expressed in (20) is fount to be valid. Finally, figure 5 shows the error contours
obtained with two of the considered meshes.

7.2. 2-D Finite elasticity. Double notched specimen

This test has been proposed for error estimation by Radovitzky and Ortiz [12]. A double
notched specimen in plain strain is considered in mode I crack opening. The analysis is carried
out with displacement control. The hyperelastic constitutive model has the following energy
function:

W (C) =
1
2
λ(log J)2 − µ log(J) +

1
2
µ(trace(C)− 3) (47)
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Figure 4. Evolution of global error with no. of D.O.F. for refinement along thickness

Table II. Computed values of the rates of convergence m and p in hypothesis (20) for Scordelis-Lo test

Mesh parameter m p

h
1.3656 0.0646

h/2
1.7541 0.9171
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1.9035 0.9940
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Figure 5. Scordelis roof. Contours of iso-error computed for the 8× 8× 1 and 16× 16× 1 meshes

with C = F T F (right Cauchy tensor), J = det(F ) and (λ, µ) the Lamé elastic moduli. The
values adopted for these constants are: λ = 110.74 and µ = 80.194. Six meshes have been
considered with 16, 64, 256, 1024, 4096 and 6400 elements with uniform remeshing. The last
one is considered in order to obtain a reference value for the energy norm ‖ϕref‖E .

Figure 6 shows the contours of local error for the meshes with 16 and 64 elements. These
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contours are drawn over the deformed mesh (without magnification) in order to show the finite
strains reached (lips of the notch were initially in touch). As expected, the discretisation error
is concentrated near the tip of the crack.
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Figure 6. Double notched specimen. Contours of iso-error for 16 and 64 elements meshes

Figure 7 shows the energy norms ‖ϕref‖E , ‖ϕenh‖E and ‖ϕh‖E , computed with the reference
mesh, enhanced elements and standard displacement elements, respectively, versus the number
of degrees of freedom. Figure 8 shows the global estimated error (‖ϕenh − ϕh‖E) and the
global theoretical error computed as difference of norms ‖ϕref‖E − ‖ϕh‖E , versus N (number
of D.O.F.s).

From these figures it is concluded that the error estimator is convergent and it agrees with
the theoretical error. Besides, the assesment of hypothesis (29) shows it to be valid in this
example too. To this end, the methodology followed is the same as in the previous example.
Table III shows the values obtained for m and p. Although initially for the coarse meshes
m < p, thus not verifying (29), after some refinements m > p proves to be valid.

7.3. Plasticity. Square plate with circular hole

This final example simulates the tensile test of a square plate with a circular hole under plane
strain conditions. It has been used as benchmark test for error estimation in [17]. A summary
of the results obtained has been published in [4]. There are two singular points in the diameter
normal to the direction of the imposed displacements. The layout and boundary conditions are
shown in figure 9, where l = 50 and r = 10, and u = 0.32 is the final value of the prescribed
displacement. The constitutive behaviour is modelled with an elastic-plastic Von Mises model
with the following saturation law for hardening:

σY = σ0 + (σ∞ − σ0)(1− e−βξ) + Hξ (48)

The numerical values adopted are: σ0 = 450, σ∞ = 750, β = 16.93, H = 129. The elastic
behaviour is defined with elastic moduli E = 206900 and ν = 0.29. For the error estimation
four meshes with 37, 407, 1583 and 3119 degrees of freedom are considered.
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Table III. Computed values of the rates of convergence m and p in hypothesis (29) for Double Notched
Specimen test

Mesh parameter m p

h
0.3658 0.7952

h/2
0.5648 0.6832

h/4
0.6209 0.5727

h/8
0.7356 0.6659

h/16
1.3355 0.7189

h/32
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Figure 7. Double notched specimen. Variation of energy norm versus no. of D.O.F.

Figure 10 shows the global error estimated at the end of the computation, with respect to
the number of degrees of freedom. The values of the error estimator obtained predict a low
order of convergence: the 1/8 slope plotted in double logarithmic scale is well adjusted to the
rate of convergence obtained in the computations.

Figure 11 shows the local error contours at the end of the process. These values are obtained
adding along the load path the incremental values obtained via (44). The maximum values of
contours are reached in the singular point, and as the mesh is refined the contours are localised
in a 45◦ band.

Finally the evolution of the local error near the singular point is studied. The error is
decomposed additively into an elastic and a plastic part, in accordance to (45). The two
components are shown in figure 12 and 13, respectively. The conclusions obtained from these
curves are:
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Figure 8. Double notched specimen. Variation of error versus D.O.F.

1. The elastic and plastic parts of the local error decrease with mesh refinement, although
the plastic part is activated earlier in the refined meshes.

2. Both components of the error increase along the load process
3. The order of magnitude of both components is similar.
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Figure 9. Square plate with circular hole. Geometry and boundary conditions
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Figure 10. Square plate with circular hole. Global error estimated
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Figure 11. Square plate with circular hole. Contours of local error

8. CONCLUDING REMARKS

The application of enhanced strain fields for error estimation in non linear problems has
been discussed. The error estimator proposed is based on the energy norm contribution of
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Figure 12. Square plate with a hole. Evolution of the elastic part of local error near the singular point.
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Figure 13. Square plate with a hole. Evolution of the plastic part of local error near the singular point.

incompatible modes and in consequence, the estimated error is zero for the the patch test
strain modes. It has been applied to linear elasticity, non-linear finite elasticity and von Mises
elastic-plastic problems.

The estimator evaluates the error for a standard displacement Galerkin finite element model.
For this, it applies an auxiliary enriched solution with assumed strain modes.

The formulation results in an algorithm which is evaluated locally, element by element,
without need to global equations nor smoothing techniques. This makes it particularly simple
and convenient to use in practice.

The limitations of the proposed approach arise from several factors. Firstly, a key assumption
is made with regard to convergence rates (20), for which we do not provide a rigorous proof.
Secondly, the error estimate for nonlinear problems is computed as a monotonic increasing
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function, which precludes valid error estimates for certain load paths. In particular, no attempt
is done to discuss bifurcations or instabilities.

In spite of the above limitations, the representative numerical examples presented show a
good performance in practical terms, which is encouraging.
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