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1. Motivation

• Dynamic nature of railway loads

• High speed trains: TGV, AVE, . . . Design speeds of 350 km/h

• New Spanish code for loads for design of railway bridges; Interna-
tional research: UIC, ERRI

• Study of resonant effects in real bridges in service.

• Dynamic factor? → Dynamic analysis!
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2. Dynamic factor Φ

• Magnifies the effects of static loads:

Sdin ≤ ΦSsta

• Takes into account (as an envelope) the dynamic nature of the
loads and vibration effects in the structure;

• Does not take into account resonance effects;

• Applies only for speeds v ≤ [220] km/h (cfr. EC-1 part. 3)
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2. Dynamic factor Φ (cont.)

♠ Section resultants proportional to displacements (δ)

Φ · δsta,lm ≥ δdin,real

where,

δdin,real maximum dynamic deflection under the real trains crossing the
bridge within project’s velocities range (0 – v km/h);

δsta,lm maximum static deflection under the selected static model.
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3. Mechanical models

• Travelling load models (TLM);

• Vehicle-bridge interaction models (VBIM);

– Detailed interaction model (DIM)

– Simplified interaction model (SIM)

• Track-deck interaction models;

• Other models: ballast mast, soil interaction...
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3. Mechanical models.

Travelling loads (TLM)
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• F1, F2 . . . Fi, constant loads.
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3. Mechanical models. Simplified interaction model
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3. Mechanical models.

Detailed interaction model (DIM)
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4. Resonance

• Due to the passage of successive axles with aproximately uniform
spacing dk;

• Resonance occurs when the frequency of excitation (or a multiple
of it) matches a natural frecuency of the structure;

• resonance occurs when loading and natural oscillation couple:

n0 =
v
dk

i

where n0: natural frequency of the bridge (Hz); v: velocity of
travelling loads
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4. Resonance.

Response of a bridge to an isolated load at speed v

• 15 m span simply supported beam;

• F= 195 kN (ICE2 power car/ axle load);

• Damping ratio ζ = 2%;

• Speed (200 – 400) km/h
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4. Resonance. Response of a bridge to an isolated

load at 220 km/h. Midspan deflection in time
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4. Resonance. Response of a bridge to an isolated

load at speed v. Maximum vertical deflection
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4. Resonance.

♠ Response of a bridge to a travelling load: Dynamic factor Φ

• Static deflection :

δsta,lm = u(L/2) =
PL3

48EI
= 1.78 mm

• Maximum vertical deflection

δdin,real = 3.02 mm[v ∈ (200,400)km/h]

• Dynamic Factor:
δdin,real

δsta,lm
= 1.69
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4. Resonance.

Response of a bridge to a series of loads moving at

a uniform speed v

• 15 m span simply supported beam;

• Fictitious train: 10 loads of 195 kN (ICE2 power car/ axle load),
uniformly spaced (16 m);

• Damping ratio ζ = 2%;

• Speed (200,400) km/h
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4. Resonance. Response of a bridge to a fictitious

train at speed v. Maximum vertical deflection
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4. Resonance. Measured damping in steel bridges
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4. Resonance. Response of a bridge to a train:

Dynamic factor Φ

• Static deflection :

δsta,lm = u(L/2) =
PL3

48EI
= 1.78 mm

• Maximum vertical deflection : δdin,real = 14.44 mm

[v ∈ (200,400) km/h]

• Dynamic Factor:
δdin,real

δsta,lm
= 8.67
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4. Resonance. Response of a bridge to a train at

288 km/h and 360 km/h. Deflection vs. time
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4. Resonance.

Predicted and measured behaviour in real bridges

• Tajo Viaduct;

• AVE train at 216 km/h;

• Madrid-Sevilla high speed railway line;

• Simply supported beam.
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4. Resonance. Tajo Viaduct
Measured
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4. Resonance. Tajo Viaduct
Predicted
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5. Analysis models

• Dynamic factor + static analysis (velocities up to 220 km/h);

• Travelling loads + dynamic modal analysis;

• Finite element calculations;

• Dynamic analysis with vehicle-bridge interaction models;

• Simplified methods: LIR, DER, etc.
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Simplified methods based upon the Train Signature

• AVLS
Excitation Transform and Response Analysis Methodology and
corresponding Train Signature;

• RIL
Residual influence line;

• IDP
Proportional train signature
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Acceleration calculation

Can be formulated as products of 3 terms:

Γ = Ct ·A(L/λ) ·G(λ)

• Ct: Constant term

• A(L/λ) Influence line → Bridge .

• G(λ) Signature → Train .

• λ = v/f0, Wave length.
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Signature of ICE2 train
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AVLS method

Ct =
4

mπ

A(L/λ) =

∣

∣

∣

∣

∣

cos(πL/λ)
(2L/λ)2 − 1

∣

∣

∣

∣

∣

G(λ) = max
i=0...N−1

1
ζXi

√

√

√

√

[

i
∑

k=0

Pk cos
(

2πxk

λ

)

]2

+

[

i
∑

k=0

Pk sin
(

2πxk

λ

)

]2

(1− e−2πζ Xi
λ )

26



LIR method
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Interoperability (I)

• Future: most of the high speed trains will run on international
lines in different countries;

• Need to specify minimum conditions in bridge and train design
that allow a safety operation.

• New bridges: induced service loads and accelerations caused
by existing trains do not exceed the limits;

• New trains must be designed so that the induced loads and
accelerations of existing bridges does not exceed the limits.

• Train signature envelope (ICE2, VIRGIN, TALGO AV and EU-
ROSTAR) is used for checking the second criterium;
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Interoperability (II)

• Other specifications of interoperability:

– The length of the train should not be higher than 400 m;

– Static load per wheelset
P0 ≤ 17 t/wheelset if V > 260 km/h

– Classical trains are covered by articulated trains if it is verified
that

4 · P ′ cos(π · d/L) < 2 · P

where P ′ is the highest axle load for the classical train and P
the highest axle load for the articulated train.
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6. Codes and Regulations

• Eurocode EC-1 3rd part, chapter 6;

• Italian code;

• Spanish code IAPF;

• UIC code 776-1 & 776-2; ERRI Comitee D214 tecnichal reports;

• European regulations for interoperability.
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